
I

I . ,

NASA TECHNICAL
MEMORANDUM

N.AS.4 TM X-53342

July 1966

THE AMTRAN SAMPLER SYSTEM INSTRUCTION MANUAL
(Rev i sed)

By M.R. Albert, P.C. Clem, L.A. Flenker, J . Reinfelds,
R.N. Seitz, and L.H. Wood

Research Projects Laboratory

NASA

George C. Mursbull
Space Flight Center,
Hmtsuzlle, Aldbamd

a

JULY 1966 TM X-53342

THE AMTRAN SAMPLER SYSTEM INSTRUCTION MANUAL
(Revised)

Albe r t , M. R . ; Clem, P. C. ; Flenker , L. A.;
Reinfelds , J . ; S e i t z , R. N. ; and Wood, L. H.

George C. Marshall Space F l i g h t Center
Huntsvi l le , Alabama

ABSTRACT

Complete i n s t r u c t i o n s a r e given f o r t he e f f i c i e n t u t i l i z a t i o n of the
AMTRAN Sampler software. AMTRAN (fo r Automatic Mathematical T rans l a to r)
i s an on-l ine remote terminal computer system. It permits t he s c i e n t i s t
and engineer t o e n t e r mathematical equat ions i n t o the computer i n t h e i r
n a t u r a l textbook format and t o ob ta in immediate g raph ica l d i s p l a y s of
r e s u l t s . I n a d d i t i o n , t he p ro fes s iona l programmer i s provided with the
c a p a b i l i t y t o bu i ld high l e v e l ope ra to r s which a r e ind i s t ingu i shab le
from the b a s i c i n t r i n s i c i n s t r u c t i o n s e t . The Sampler vers ion o f AMTRAN
r e t a i n s most of t he software f e a t u r e s of AMTRAN, bu t r e q u i r e s no hard-
ware modif icat ion and can be used on any IBM 1620 computer with a t l e a s t
40K s to rage .

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X-53342

THE AMTRAN SAMPLER SYSTEM INSTRUCTION MANUAL
(R e v i s e d)

Flenker, L . A . ; R e i n f e l d s , J . ;
S e i t z , R . N . and Wood, L. H.
R e s e a r c h Projects L a b o r a t o r y

and

A l b e r t , M. R. and C l e m , P . C .
N o r t h r o p C o r p o r a t i o n - H u n t s v i l l e , A l a b a m a

RESEARCH PROJECTS LABORATORY

RESEARCH AND DEVELOPMENT OPERATIONS

TABLE OF CONTENTS

I. INTRODUCTION

A.

B. ApITRAN's Sampler

C. Hardware Requirements

D. Loading the Sampler Software for a Checkout

General Comments on AMTRAN's C a p a b i l i t i e s

of t he System

E. Programming i n AMTW

11. THE AMTRAN LANGUAGE

A. Mnemonic Labels

1. Algebraic Operators

2. Comparison Operators

3 . Constants

4 . Correc t ion Operators

5. Exponential and Logarithmic Operators

6 . Input/Output Operators

7. Power Operators

8. Program Operators

9. Array Definers

10. Reg i s t e r Operators

11. Transfer of Control and Repeat Operators

12. Trigonometric Operators

PAGE

2

2

3

4

4

5

8

8

8

8

8

9

9

9

9

10

10

10

10

11

iii

TABLE OF CONTENTS (Continued)

111. ENTRY OF NUMBERS

A . Decimals and Integers

B. Scientific Notation

IV. FUNCTIONS, CONSTANTS, AND REGISTERS

A. Definitions

B. Storage of Constants

C. Storage of Functions

V. ARITHMETIC OPERATIONS

A. Introduction

B. Equal Sign

C. Arithmetic Expressions in General

D. Addition 6 Subtraction

E. Multiplication

F. Division

VI. AUTOMATIC ARRAY ARITHMETIC

VII. LOGIC OPERATORS

A . IF

B. REPEAT

VIII. INTEGRATION & DIFFERENTIATION

A. Numerical Integration

B. Numerical Differentiation

C . Symbolic Differentia tion

iV

14

14

15

17

17

17

18

23

23

23

24

25

26

27

30

32

32

35

38

38

42

44

TABLE OF CONTENTS (Continued)

I X . CONSOLE PR0GRP;MMING

A . Introduction

B. Programming Mechanics

C. Programing Capabilities

1. NAME

2 . READ

3 . PUNCHOUT

4. DUMP

5. LIST

6 . DELETE

7 . EDIT

8. RESET

9 . CORE

10. EXIT

11. REPEAT

1 2 . TRANSFER

D. Modes of Operation

E. General Purpose Programs

F. Programming Levels

X. I N P U T A N D OUTPUT

A . 1/0 of Console Programs

B. 1/0 of Data

C. Fonnat Control

D. Comment Statements

47

47

48

49

49

5 1

5 1

52

52

53

5 4

55

56

56

58

58

6 0

61

66

7 1

7 2

7 3

76

80

V

TABLE OF CONTENTS (Concluded)

X I . SENSE SWITCHES 82

X I I . PROGRAMS I N THE AMTRAN SAMPLER SUBROUTINE PACKAGE 85

X I I I . ERROR MESSAGES

XIV. SOLVING A NON LINEAR DIFFERENTIAL EQUATION

A. T h e Solve O p e r a t o r

B. P i c a r d ' s Method

xv . CONCLUSION

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

94

100

100

101

105

106

107

115

120

I. INTRODUCTION

1

I . INTRODUCTION

GENERAL COMMENT ON AMTRAN'S CAPABILITIES

AMTRAN is a multi-terminal conversational mode computer system

designed to permit scientists and engineers to converse with the computer

in the natural language of mathematics, entering mathematical equations

into the computer according to textbook format and receiving immediate

graphical and alphanumeric displays of results on a cathode ray scope

and/or a typewriter. T o permit the user to handle problems of a non-

routine nature, AMTRAN also provides full programming capabilities.

T o give the system further flexibility, it is being designed to accept

and run FORTRAN I1 programs.

A typical AMTRAN terminal consists of (1) a large function and

operator keyboard with about 200 push buttons organized into operational

groups,

and (3) two cathode ray storage scopes, one for graphical and the other

for alphanumeric display of results. A Polaroid camera provides a

hard copy record of final graphical results. While AMTRAN will contain

a real time FORTRAN I1 incremental compiler, its capabilities extend

beyond FORTRAN in certain important ways. TWO of the most important

AMTRAN features are:

(2) a special typewriter which can type numerators and denominators,

2

i
I
i

I
I

I

I

I

I

I

(1) AMTRAN provides automatic a r r ay a r i t hme t i c . Because t h e system

can d i s t i n g u i s h between a func t iona l a r r a y and a cons t an t , an

ope ra t ion defined on an a r r a y w i l l au tomat ica l ly be performed on

a l l i t s members.

of mathematics such a s func t ions and cons tan ts .

(2) I n a d d i t i o n t o the usua l programming c a p a b i l i t i e s , t he use r

a l s o has t h e a b i l i t y t o quick ly and e a s i l y cons t ruc t ope ra to r s o r

macro ins t ruc t ions which a r e ind i s t ingu i shab le from the r e p e r t o i r e

of permanently programmed AMTRAN i n s t r u c t i o n s . Furthermore, t hese

ope ra to r s can be nested o r pyramided, t o bui ld powerful Operators ,

which e l i c i t , wi th one mnemonic o r bu t ton push, a sequence of

ope ra t ions by the computer.

ope ra to r s may be programmed makes it f e a s i b l e t o c o n s t r u c t a

l i b r a r y of macro ins t ruc t ions and subrout ines .

s tored on a d i s k and becomes ava i l ab le t o a l l u se r s .

The u s e r can, therefore , work wi th the normal e n t i t i e s

The ease and speed with which these

This l i b r a r y i s then

AMTRAN'S SAMPLER

The AMTRAN Sampler system i s a necessa r i ly r e s t r i c t e d ve r s ion of

AMTRAN and uses only card and typewri ter f o r i npu t and output . Because

it i s designed f o r a 40,000 d i g i t IBM 1620, t he Sampler does not r equ i r e

any s p e c i a l hardware, o t h e r than t h a t s t a t e d under Hardware Requirements.

The f u l l AMTRAN system, however, takes advantage of more spec ia l ized

hardware, such a s d i s k s to rage , a high speed p r i n t e r , cathode r a y scope,

and console keyboard.

3

Despite the limiting factor of the small size of available core

storage area, the Sampler has many of the software capabilities of the

extended AMTRAN language.

HARDWARE REQUIREMENTS

An IBM 1620 with the following minimum requirements is necessary

for the Sampler's use:

1. 40 K Memory

2. Floating Pt. Hardware

3 . Automatic divide

4. Indirect addressing

5. TNF, TNS, and MF instructions

6 . IBM 1622 card reader/punch

Requirement 5 can be waived by slight modifications of the software.

Requirement 2 can also be deferred but at a cost of about 3000 digits

of the console program storage area.

LOADING THE SAMPLER SOFTWARE FOR A CHECKOUT OF THE SYSTEM

The Sampler's software consists of two parts:

1. A basic interpretive deck punched on consecutively

numbered yellow cards, and

2. A register and console-program deck which 5s punched on

white cards. The user is advised to duplicate both decks as

soon as he receives them.

4

Instructions for loading the software and for setting the typewriter

tabs and margins are given in Appendix A. After the Sampler program

has been loaded into the computer, and the typewriter has typed

ENTER PROGRAM

1.

a check of the system can be made by typing the following test statement -
1. TYPEOUT 2 + 2.RS*

2 + 2 = 4

Jrllhroughout this manual, the symbol RS (Release and Start) is used to

refer to the following instruction:

Press the RS button on the typewriter, or press the Release
button and then the Start button on the 1620 console.

Unless the computer gives the above answer, something has gone drastically

wrong.

configuration required by the Sampler.

user is advised to contact the authors of this manual.

For example, the computer may not have the correct hardware

In the event of trouble, the

PROGRAMMING IN AMTRAN

The Sampler contains a realtime interpreter of mathematical ex-

pressions, which permits the user to converse with the computer in the

natural language of mathematics.

the user needs to become familiar with a brief mnemonic language, simplified

by the use of conventional mathematical labels. For example:

To realize AMTRAN's full capabilities,

5

SIN

cos

TAN

ABS

LN

SQ

SQRT

P I

EXP

sine

cosine

tangent

absolute value

natural logarithm

square

square root

the constant (Tt' = 3.1415927)

exponential

In addition to the mnemonic labels and their corresponding uses, certain

systems procedures must be learned, such as putting a ".RS" at the

end of a complete mathematical statement.

Once the mnemonic labels and system procedures are learned,

mathematical expressions of any complexity can be written. Then,

grouping these expressions together and adding input/output instructions

and logic and branch operators, the user can build a sequence of state-

ments which solve a particular problem. Such a grouping is called a

program,which can be written to any length or complexity required.

6

11. THE AMTRAN LANGUAGE

7

11, THE AM'TRAN LANGUAGE

MNEMONIC LABELS

In addition to the letters of the alphabet, the Arabic numerals,

and the special characters motinted on an IEM 1620 console typewriter

(- + * / . $ @ ,) the Sampler also uses variable length call

codes with a maximum of 24 letters to call its various operations. Those

fixed in the system are:

ALGEBRAIC OPERATORS

ABS The absolute value

LEFT Left Shift

RIGHT Right Shift

SUM Running Summation

RELATIONAL OPERATORS

AND Used to link compound statements

EXCEEDS Greater than (>)
IF Compares two arithmetic expressions

LESSTHAN Less than (<)

CONSTANTS

DEGREES

LG

PI

Converts degrees to radians

The constant

The constant 3.1415927 = fl
e = .43429448

loglo

8

.

CORRECTION OPERATORS

DEXETE Deletes a program stored in core

EDIT Used to change or delete a sentence

BESET Resets the computer

EXPONENTIAL AND LOGARITHMIC OPERATORS

EXP The exponential

LN Natural logarithm

LOG Logarith to the base 10

INPuT/ouTpuT OPERATORS

ENTER Accepts a complete statement from the typewriter

INPUT Accepts a single numerical typewriter entry

READ Instruction given to read cards from the card reader

CARD Gives a punched card deck of the register specified

DISPLAY Gives a type written display of the register specified

DUMP Gives a typed copy of the designated program

LIST Causes a listing of the names of all console programs
in the computer to be typed

PUNCHOUT Punches a card deck of the specified programs

TYPE Allows typewriter coment statements

W Allows card comment statements

POWER OPERATORS

POWER Raises a number to the specified power

SQ Squares expressions

SQRT Takes the square root of mathematical expressions

9

PROGRAM OPERATORS

EXECUTE Reinstates the execution mode of operation

RESULTS The temporary storage location of intermediate and
I final results

NAME Assigns a mnemonic label to the given program

SUPPRESS Suppresses execution of a program

I SETREG S e t s the number of function registers

CORE Gives the number of locations remaining in the console
program area

ARRAY DEFINERS

INTERVALS

SUB Subscript

XMIN First abscissa value

The number of intervals between XMIN and XMAX

XMAX Last abscissa value

REGISTER OPERATORS

TRANSFER OF CONTROL AND REPEAT OPERATORS

ALL Used with DELETE, PUNCHOUT, and DUMP to designate all
programs

END Denotes the end of a program read from the card reader
and causes computer control to come to the typewriter

EXIT Causes a program exit

GOTO Branch instruction

REPEAT Repeats a designated program or expression an integer
number of times

SWITCH Used to represent Sense Switch 1 in an IF test

TRIGONOMETRIC OPERATORS

ARCTAN Inverse tangent (tan-)

cos Cosine

SIN Sine

1

For a detailed description of these constants and operators, including

their exact uses, please consult Appendix B.

Either a space or a parenthesis must be placed between the mnemonic

label and its argument. For a single variable or constant a space is

necessary. For example:

1. SINX .Rs

2 . ABS A .Rs

3. EXP 12.3 .RS

4. TAN -17 .RS

5. cos PI

When the argument is a mathematical expression with more than one

term it must be enclosed by parentheses.

1.

2.

3 .

4.

5 .

6 .

COS (X+Y) ,RS

LoG(4X) ,RS

SQRT(B SQ -4AC).RS

COS(P1 - 89.3 DEGREES) .RS

((A+B)DEGREES -X) SQ .Rs

LN(6*10 POWER (A+X)) ,RS

11

If there is any question as to whether an expression requires

parentheses, they should be used. GO TO is the only label that is not

one continuous word; it must be separated by a space. Aside from this

spacing is arbitrary. Additional spaces will be ignored by the computer

l and can be positioned to make expressions more readable, For comparison:

1.6 x l o 2
1.6 J: 10 POWER 2 or

1.6W0 POWER 2.

can be entered a s

A + B - S I N (e*) can be written as
C+F

All mnemonic labels precede the expressions on which they operate

with the exception of DEGREES, SQ, and POWER, which follow their arguments.

12

111. ENTRY OF NUMBERS

13

111, ENTRY OF NUMBERS

DECIMALS AND INTEGERS

Numbers may be entered from the typewri te r keyboard o r from cards

i n any n a t u r a l format. For example:

0

0.0

- 1718.3026951

8 POWER 2

.008

.02000000

- 123456709

6 POWER - 10.6

-26.3 POWER (A + 9.6671)

a r e a l l l eg i t ima te e n t r i e s

The A M W N sampler accep t s on ly 8' s i g n i f i c a n t d i g i t s , and if more

a r e en tered , t he n i n t h d i g i t i s used t o round o f f t h e e igh th d i g i t t o

t he nea res t decimal place. Therefore , t h e number

1718.3026951 i s i n t e r p r e t e d by the computer a s

1718.3027 , and the number

123456789 i s i n t e r p r e t e d a s

I 14

1

12345679 , and the .number

.008127197569 is interpreted as

.008127 1976.

SCIEN'IXFIC NOTATION

Numbers with large positive and negative exponents could, as a

matter of convenience, be entered in scientific notation--i.e., as

a power of ten. For example,

.000000000015 could be entered as

15*10 POWER -12 or

1.5 * 10 POWER -11 or

.15 * 10 POWER -10.

.All 3 entries are valid. The notation 15 * 10 POWER -12 is equivalent

to 15 x (scientific notation). Both the asterisk (a multiplication

symbol) and the mnemonic POWER followed by a space or parenthesis are

required when entering numbers in scientific notation. Examples:

w o o becomes le10 POWER -2

or 10 POWER -2

99999 becomes 9.9999 * 10 POWER 4

or 99.999 * 10 POWER 3

12345678 becomes 1.2345678 * 10 POWER 8

16 x 10 (-12.96) becomes 16 * 10 POWER (-12.3 + 6)

15

IV. FUNCTIONS, CONSTANTS, REGISTERS

16

IV . FUNCTIONS, CONSTANTS, REGISTERS
D EFLNITIONS

This instruction manual uses the word constant to refer to an

individual number which is stored in the machine, and the word function

to refer to a,list or array of numbers which constitute a numerical

representation of a mathematical function. The word register is used

to refer to a storage area which can hold either a constant or a list

of numbers which represent a function.

STORAGE OF CONSTANTS

The Sampler possesses constant storage registers designated by

the alphabetic letters A-R.

programmed values. Example:

These registers are assigned to represent

3 = A . R S

A-4 = B. RS

A+B = C. RS

It should be noted that a constant register will store only one

number.

17

I n a d d i t i o n t o the A-R r e g i s t e r s ; t h e r e a r e t h r e e fixed constant

r e g i s t e r s , s t o r i n g the f r equen t ly used numbers:

Mnemonic

PI

LG

DEGREES

Explanation of Mnemonic

S t o r e s 3.1415927

S t o r e s log e (.43429448)

S t o r e s PI/180 and i s used t o convert
degrees t o r a d i a n s

10

These cons t an t s can be ca l l ed simply by typing o r punching the

appropriate mnemonic.

STORAGE OF FUNCTIONS

I n the Sampler, funct ions (or a r r a y s) a r e s tored i n r e g i s t e r s .

These r e g i s t e r s a r e a r e a s of computer core s to rage s e t a s i d e t o hold

number a r r a y s . There a r e e i g h t such r e g i s t e r s which a r e addressable

by the a lphabe t i c l e t t e r s :

vers ion of AM.TRAN, each r e g i s t e r is capable of holding an a r r a y of 51

numbers, and i n the 60 K ve r s ion a r r a y s of 101 numbers can be s to red

i n each funct ion r e g i s t e r . I n i t i a l l y t h e r e a r e a t o t a l of 13 r e g i s t e r s

f o r the 40 K and 60 K v e r s i o n s . These can be referenced (or c a l l e d)

by the mnemonics REG 1, REG 2, ... REG 13, where REG 6 - REG 13

correspond t o the r e g i s t e r s S-2 . However, s p e c i a l ca re must be exercised

when assigning a r r a y s t o REG 1 - REG 5, and t h e r e f o r e Appendix C should

be consulted before s t o r i n g a r r a y s i n t h e s e f i v e r e g i s t e r s .

S, T, U , V , W , X, Y, Z, I n the 40 K

18

To generate an a r r a y i t is necessary t o give the computer t h e

following i n s t r u c t i o n :

RANGE OF N , i i i
1' 2' 3

where N = r e g i s t e r name

i = minimum value of a r r a y

i = maximum value of a r r a y

1

2
i = number of i n t e r v a l s between i and i (an i n t e r v a l s i z e

3 1 2
of i r e q u i r e s i + 1 numbers f o r i t s rep resen ta t ion)

3 3

Examples:

(1) To generate an a r r a y over the range 0 I x 1, A x = .1 e n t e r :

RANGE OF X , 0 , 1, 10.

10 i n t e r v a l s over the range from 0 t o 1 makes A x = .1 and g ives an

a r r a y i n the X r e g i s t e r equal t o 0, .1, . 2 , - 3 , . 4 , .5, . 6 , . 7 , .8, 1.

Once t h i s a r r a y has been generated by a RANGE i n s t r u c t i o n , i t can

be hencefor th ca l l ed simply by en te r ing "X". i . e . ,

SIN x + cos x = w,Rs

(2) To generate an a r r a y over the range 05 2 I 10, Z = .5, en te r :

RANGE OF Z , 0, 10, 20.RS

1 9

This stores in the Z register the array:

0, .5, 1, 1.5, 2, 2.5, . . . 10.
(Note that an interval' size of 10 generates an array of 11 numbers.)

To generate an array with more than 51 (40 K version) or

101 numbers (60 K version) a SETREG instruction can be declared.

Please consult Appendix C for a detailed explanation of this

procedure.

Subscripts are used to call an element in an array without

calling the entire array. They are of the form:

X SUB 0 = first array value (Xo)

X SUB 1 = second array value (X) 1
X SUB N = last array value (X) n

When the computer has completed the generation of X the typewriter

returns carriage, tabulates, and then numbers for the next statement.

To look at the contents of any register, turn computer console

Sense Switch 2 on and enter DISPLAY followed by a register letter,

such as DISPLAY X or DISPLAY T. The typewriter will then,type the

numerical representation of the function.

X SUB 0 =

X SUB 2 =
.

X SUB 1 =

X SUB 3 =

X SUB N =

20

.

If Sense Switch 2 had been in the”off”positiorg only X SUB N would

have been displayed.

21

V. ARITHMETIC OPERATIONS

2 2

V. ARITHMETIC OPERATIONS

INTRODUCTION

Since one of A M " ' s goals is to enable the scientist or engineer

to enter mathematical expressions in their natural textbook format,

certain conventions are followed with respect to the arithmetic operations.

EQUAL SIGN

The equal sign in the Sampler is a replacement operator and can

be thought of as a right pointing arrow.

left side is placed in the register or location to the right of the

equal sign.

The numerical result of the

The expression: 1. A + 1 = A,RS is a valid equation. Suppose

A has a certain initial value. Statement 81 causes the computer to

go to the A register, add 1 to the value there, and store this result

as the new value for A .

In a similar manner

x + Y = x.Rs

is an allowable statement in AMTRAN.

In AMTRAN it is also possible to have a series of equalities in

one statement. Example:

23

12.4 = A = B = C = D .RS

Constant registers A, B, C, D will all be filled with the value 12.4.

ARITHMETIC EXPRESSIONS IN GENERAL

All mathematical expressions are entered to the left of the "="

sign. Example:

A + SIN (45 DEGREES) = B .RS

Only a single letter variable or a subscript can be defined to the

right of the equal sign; a number cannot be used.

The expression A = 2.RS is - not a valid statement in AMTRAN. However,

2 = A. RS

or 3 = X SUB 5. RS

are allowable.

All mathematical expressions are terminated by a ".RS". A series

of expressions can be entered under one Statement number by following

each equation by a comma. Example:

1. 2 = A , A + 3 = B , A + B = C , R S

It is not necessary to declare a variable to the right of an equal

sign. The expression 1. 2X + 3Y/10 .RS is a valid statement

in AMTRAN.

remains in the floating accumulator (a register that moves up and down

the stack of registers temporarily holding the results of computations)

until the next arithmetic operation destroys it.

When a transfer is not declared, the result of the expression

Therefore, if an unstored

24

compu ation is needed, it must be referenced immediately by the mnemon

RESULTS. Example:

1. 2X + 3Y/lO.RS
2. RESULTS - Y SQ .RS
3. RESULTS/X = W,RS

.L

In statement #2 RESULTS = 2X + 3Y/10, and
in statement #3 RESULTS = 2X + 3Y/10 - Y SQ.

A constant can be placed in any of the registers, constant or

function. A functional array, however, can only be placed in a function

register. Example:

1. X + 1 = A.RS

is an improper entry.

in a constant register. Example:

A member of a functional array can be placed

1. A = X SUB 0.RS

ADDITION AND SUBTRACTION

Additions and subtractions are performed exactly as they are in

natural mathematics.

1. A.+ .I = Y SUB 1 .RS

2. Y - X + .7542 = Z .RS

3. Y - (2 + 35). RS

25

MULTIPLICATION

Multiplication is an implied operation in AMTRAN and requires no

special symbol, Example:

1. 2X + . 3 (Y + A) = Z.RS

2 is multiplied by X and then added to the quantity . 3 multiplied by

Y + A . The expressions:

1. Y X SUB 1 = Z,RS

2 . X SUB 1 Y = Z.RS

are equivalent and are evaluated by the computer a s Y multiplied by

X SUB 1.

Because multiplication is an implied operation only single letters

or subscripted variables can be used to represent constants and functions.

For example, a constant designated as A2 would be interpreted by the

computer to mean A is multiplied by 2.

Since one letter mnemonics are reserved for constant and function

storage registers, when the computer receives a string of two or more

letters from the keyboard, it compares this sequence with its table

of mnemonics. If the computer fails to recognize a string of characters

as a label, it interprets each letter as a storage register and carries

out the implied multiplication. For example, ABCDE is interpreted as

AJcBW7’cDf:Efc, because ABCDE is not a mnemonic lable.

When the user wishes to multiply the contents of two registers, he

is responsible for insuring that a mnemonic is not accidentally generated.

26

For example, to multiply the contents of the C register by the contents

of the 0 register and the contents of the S register, he should enter

CSO rather than COS.

can be put between the letters. C W * S will not be interpreted as

calling the cosine.

In case of doubt, explicit multiplication symbols

Consider the constants intrinsic to the AMTRAN Sampler:

P I , XMAX, XMIN, INTERVALS, DEGREES, LG.

To multiply

'lY x 45' X -43429448 x XMAX

it is necessary to use the explicit multiplication symbol or leave

blanks between the constants.

Written in AMTEUN the above expression becomes

PI*45 DEGREES*LG*XMAX

PI 45 DEGREES LG XMAX
or

DIVISION

A diagonal slash mark " / I 1 is AMTRAN's division symbol. The

mathematical expression

6(X+Y) is written in AMTUN as
B+C

6 (X + Y) / (B + C) and

10 is entered as
XY(A+B)

27

If this instruction were written without the outside parentheses i.e.

1O/XY (A+B.) . RS
the computer would interpret this as the expression

10 Y(A+B) . -
X

28

VI. AUTOMATIC ARRAY ARITHMETIC

29

VI. AUTOMATIC ARRAY ARITHMETIC

The AMTRAN system has the ability to automatically distinguish

between arrays of numbers, which constitute numerical representations

of functions, and individual numbers, which represent constants or

parameters. For example, in calculating SIN X, where X is an array

of 50 numbers, the computer automatically calculates the sine of all

50 numbers in the array.

where A is an individual number, the computer automatically recognizes

that A is an individual number and will take the sine only once. When

a situation arises in which a constant must be added to, subtracted

from, or multiplied by a functional array, the computer will automatically

carry out the designated operation on every number in the array with

the constant. Similarly, to divide one function Y by another function

X, the computer will recognize that X and Y are functions and will

divide every number in the Y array by the corresponding number in the

X array.

On the other hand, to take the SIN A

30

V I I . LOGICAL OPERATORS

31

VII. LOGIC OPERATORS

IF (for the comparison and testing of mathematical expressions)

In the evaluation of a mathematical expression, it is often

necessary to determine whether the final result is greater than, less

than, and/or equal to another expression or number, and depending on

this information to carry out a special sequence of instructions or

operations.

expressions to be compared and tested.

Thus, AMTRAN provides an IF operator that allows mathematical

The IF test is comprised of three clauses: an IF, a THEN, and an

OTHERWISE. The I F clause specifies the expression to be tested, the

relational conditions (less than, greater than, and/or equal) and

the limiting term. The relational mnemonics are: LESSTHAN which is

equivalent to the mathematical symbol- c ; EXCEEDS which is equivalent

to > ; "EXCEEDS=" which is equivalent to Z ; and "LESSTHAN=" which

is equivalent to f .
In the IF test two functions (arrays) can be compared. Example:

1. I F X = Y ,
2. I F X SQ - 1 7 . 3 LESSTHAN Y/X + SQRT Y,
3 . I F X POWER 6 EXCEEDS = Z ,

32

In statement 1, each value of the X array is compared with the corresponding

value of the Y array, i.e., X SUB 0 is compared with Y SUB 0, X SUB 1

with Y SUB 1, X SUB N with Y SUB N. In statement 2 ,

(X SUB 0)2 - 17.3 Y S U B o + y?TEz,. . . . ,
X SUB 0

is compared with

(X SUB N)2 - 17.3 with SUB + V K . In a similar manner
for statement 3, (X SUB 0)6 is compared with Z SUB 0, , and
(X SUB N)6 with Z SUB N.

X SUB N

In the IF clause a function can be compared with a constant

IF X = 3.7,
IF EXP X + 22.3 EXCEEDS SIN (16 DEGREES) ,
IF SIN (5 DEGREES) = X ,
Two constants can also be compared under the IF clause

IF B LESSTHAN .005,
IF A / B + 20 = SQRT 11.4,
(Note:

and the expression X + Y2 - Z = Y POWER 3 + Z/100 is completely acceptable).
In the IF clause an equal sign is not a replacement operator,

The THEN clause of an IF test tells the computer what to do when

the IF clause is true. It can contain a branch statement:

IF A = B y THEN GO TO 3.RS

The "GO TO" mnemonic'label causes control to be transferred to the

statement number appearing after it (GO TO 3 tells the computer that

the next statement to be executed is #3) . When function arrays are

involved in the IF c1ause;a GO TO declared in the THEN clause will

33

result in a branching out of the IF.test. The statement IF A = X, THEN

GO TO 2,will not test every member of the X array to determine if it

is equal to A. It will test only those elements prior to its finding

an X SUB J = A , and then it will branch out of the IF test and not return.

in the THEN clause.

IF B = X, THEN X / B = Y,

An IF test can be embedded in the THEN clause,

IF X = Y, THEN IF Y = 'Z, THEN Z = 4 ,

The OTHERWISE clause tells the computer what to do when it encounters

an invalid IF clause. As in the THEN clause, it can contain a branch

statement, a mathematical equation, or an embedded IF test.

array is involved in the IF clause, a GO TO declared in the OTHERWISE

clause results in'a branching out of the IF test.

When an

Example:

IF X = Y, THeN Z = Y, OTHERWISE GO TO 3.RS

When an X SUB K i s encountered,such that X SUB K #

is transferred out of the IF test to the indicated statement as a

result of the GO TO mnemonic in the OTHERWISE clause. Once control is

transferred out of the IF test no return is made to test the remaining

values in the X array.

Y SUB K , control

The OTHERWISE clause can be omitted, in which case control falls

through to the next statement after the IF test.

34

Both of the words THEN and OTHERWISE are dummy words and need

not be stated except where clarity is desired. The commas separating

the phrases, however, are necessary.

The IF test can be expanded through the use of the AND conjunction

in both the THEN and OTHERWISE clauses

IF X = Y = Z, THEN B + 1 = X A M) X/B = Y .RS

IF 3 = A , At1 = A,OTHERWISE 0 = A AND GO TO 3.RS

There is also an IF test that utilizes Sense Switch 1 on the

IBM 1620 console. Example:

IF SWITCH 1, T,rIEN, OTHERWISE . . .
If Sense Switch 1 is on, control is transferred to the THEN clause,

and if S.S.1 is in the "off" position, control goes to the OTHERWISE

phrase. This option gives the user the opportunity to compare at

execution time rather than at the time he programs.

REPEAT

It is often necessary to compute the result of a mathematical

expression a specified number of times changing a parameter or array

variable after each computation.

is designed to handle this logic problem.

The AM" Sampler's REPEAT operator

The instruction is:

REPEAT N, any mathematical expression .RS

(where N is the integer number of times the mathematical

expression is to be repeated.)

35

N can be a number, a constant storage register (A-R), or a mathematical

expression whose result is a single number. To illustrate:

ENTER PROGRAM

1. REPEAT A + 3 , INT EXP X = Y AND X + 1 = X.RS

, (IF A + 3 happened to be a decimal number, it would automatically be
I

rounded off to the nearest whole number.)

Any number of statements can be grouped together after the "REPEAT N",

phrase provided that each one is separated by the mnemonic AND. In the

above example, the expression INT EXP X = Y is computed A +3 times.

After each computation of Y, the value of X is increased by 1.

,

In that section of the manual entitled "Console Programming" a

method will be discussed whereby a lengthy series of mathematical

statements and instructions can be indirectly declared and repeated

N number of times by entering a single mnemonic label after the REPEAT

phrase.

36

V I I I . INTEGRATION AND DIFFERENTIATION

37

V I I I . INTEGRATION AND DIFFERENTIATION

INTRODUCTION

The Sampler provides numerical integration and differentiation

capabilities, both of which are AMTRAN subroutines (or console programs).

The mnemonic I N T calls integration and the mnemonic DERIV calls differen-

tiation. The mnemonic labels are followed by a mathematical expression

which must be enclosed in parentheses if it contains more than one term.

In addition to numerical differentiation, the Sampler also has the ability

to differentiate analytically. For the 40K version this procedure is

available as a stand alone system.

INTEGRATION

To show how the numerical integration operator is used, it is best

to begin with an example: To calculate

. enter

I N T ((EXP X + S I N X) / (X + 1)) .RS

X must have been previously generated over the prescribed range with

say 10 intervals. The numerical representation of the integral is then

38

cornputel. and the result stored in the accumulator. To obtain the result

of this definite integral type

DISPLAY RESULTS .RS

r ,

For this instruction, Sense Switch 2 should be in the'loff position.

The computer types

RESULTS SUB 10 = 1.4096106.

This is the definite integral of X from 0 to 1 with a step size of

0.1.

Note that no limits of integration were specified in the above

integral. The computer automatically takes for its range of integration

the range of X. Also note that no DX was used. Since the Sampler is

designed primarily for functions of one independent variable , the

variable of integration is implied and is generated from the abscissa

values stored in the specified function register.

To store the above integral in a register (say Y) the user would

type

RESULTS = Y.RS

Therefore, to obtain the correct definite integral, he would enter

DISPLAY Y.RS

39

The above integral, which we have obtained is actually the integral

from 0 to X (in numerical forin). As such, it differs from the indefinite

integral F(X) only by a constant, F(O), where F(0) is the definite

integral evaluated at the lower limit of the range of integration.

the indefinite integral is given, for this example, by

Thus,

F(X) = INT ((EXF' X + SIN X)/(X+l)) + F(0) = Y + F(0)

This fact becomes important in carrying out a double integration.

F(X) = F(0) + INT ((EXP X + SIN X)/(X + 1)) + DF(0))

A factor to consider in using the Sampler's integration scheme is

that of accuracy.

seven to eight place accuracy if two conditions are met;

of integration must not be too large;

in the neighborhood of a singularity. To illustrate these points,

consider INT LN X over the range .01 5 x 5 10.01, using 100 intervals.

This will give poor results for three reasons.

Sampler's integration scheme extrapolates the values of the integrand

at two points to the right of the right-most tabulated value and at

two points to the left of the left-most tabulated value. Thus, it

extrapolates the values LN(-.09) and LN(-.19). Since LN(X) has a

singularity at X = 0, and values of LN(-.09) and LN(-.19) are large

and meaningless, and consequently, the integration procedure does not

work well.

The Sampler's fifth order integration formula provides

1) the range

2) the user must be very careful

First of all, the

40

A second cause of trouble is the very rapid change in value of the

integrand over the specified range. The integrand varies from - LN(100)
to + LN(10). A third cause of difficulty resides in the fact that the

higher derivatives are approximated in the integration procedure. Not

only do these become very large (the fourth derivative is given by

24/X to the fourth power = 2,400,000,000), but they also grow progressively

larger.

This invalidaces the fundamental assumption upon which the integration

is based, namely, that the first few terms of a power series expansion

can be used to approximate the curve over a small interval. To illustrate

this point, consider the contribution of the fourth-derivative term at

the point X = .01 as used in the Sampler's integration scheme. Its

contribution over the interval .1 to .2 is:

12/720 * 2,400,000,000 * .1 Power 5 = .433

The above three problems can be overcome by splitting up the range

of integration into different parts, for instance, an integral from

.01 to .101, an integral from .lo1 to 1.01, and an integral from 1.01

to 10.01 could be used to represent the integral over the range from

-01 to 10.01.

The question logically arises as to how many intervals to use. There

is no completely satisfactory answer to this question, but, after con-

sidering the above comments regarding singularities, a range of representation

and a step size, should be tried, and then the same integration process

41

repeated using a different number of intervals.

change except in the last decimal place, it can be assumed that a

sufficient number of intervals have been employed. Note: Because of

the integration scheme used, at least 5 intervals are required for

the representation of an integral.

If none of the numbers

To increase accuracy in the integration process the correction of

approximation errors was discussed relative to step size and singularities.

However, another type of error exists which should also be considered.

This is truncation error and is due to the dropping of digits in the

running summation used in the integration over-the range 0 to 1.

correct value of the integral from 0 to 1 is EXP (1) - EXP (0) =

1.7182818. Using 100 intervals, the value given by the computer is

1.7182811. Using 50 intervals, the computer gives 1.7182816. With

15 intervals, the computer gives 1.7182818, and with 10 intervals, the

computer gives 1.718. Thus, roundoff errors decrease steadily, down

to about 15 intervals, beyond which point the numerical representation

of the function becomes inadequate,

The

NUMERICAL DIFFERENTIATION

Numerical differentiation, using forward differences, is available

as an AMTRAN subroutine. It should be observed, however, that numerical

differentiation is inherently less accurate than numerical integration

because the methods of computation in each case are different. In

42

numerical differentiation a small deviation between the actual and

approximated curve over a given interval, although slight, may result

in large differences of slopes.

the computation of the derivative if such errors resulted in an alternation

of the sign of closely spaced consecutive ordinates. Numerical integration

schemes, on the other hand, are primarily smoothing procedures, summing

over many intervals, and therefore, the associated errors may be small

even though the interpolati+on polynomial is only a moderately good

approximation of the function. In particular, then, numerical differentiation

should be employed cautiously and avoided when data is empirical and

subject to appreciable errors of observation.

To take the numerical derivative of

Errors of observation could also affect

4 3 X - % + 16 x2 - 145
e

the user would enter

DERIV(X POWER 4 - X POWER 3/EXP X + 16 X SQ - 145).RS
where X has been previously defined in a RANGE declaration.

Everything that has been said about integration applies even more

stringently to differentiation.

has been derived by witchcraft.

in various test cases than the formally correct differentiation scheme

which corresponds to the Sampler's integration scheme.

the user should apply it with caution, using different ranges or interval

numbers to check its accuracy.

The Sampler's differentiation scheme

It has provided much better accuracy

For this reason,

SYMBOLIC DIFFERENTIATION

A s p e c i a l software f e a t u r e i s a v a i l a b l e a s a complement t o the

AMTRAN system: symbolic d i f f e r e n t i a t i o n . I n the 40K ver s ion of the

Sampler, i t m u s t be entered a s a s epa ra t e deck because of l imited core

space,

After t h e symbolic d i f f e r e n t i a t i o n o b j e c t deck has been read i n t o

the system, the computer i s ready f o r the u s e r t o e n t e r h i s equation o r

read i n a console-programmed mathematical expression. Example: To a i f f e r e n t i a t f

Y = x2ex + 2~ + 100

with respect t o X the use r would e n t e r

Y = XXEXP X + 2X + 100, RS

The computer then types

DY/DX = 2XEXP X + XXEXP X + 2-

a f t e r which a new equation can be immediately en te red .

To o b t a i n higher o rde r d e r i v a t i v e s the u s e r e n t e r s t he preceding

d e r i v a t i v e a s the new expression f o r y. To find the second d e r i v a t i v e

of Y = x e + 2X + 100 i t i s necessary t o compute the f i r s t d e r i v a t i v e ,

a f t e r which the use r would e n t e r DY/DX a s Y:

2 x

Y = 2XEXP X + XXEXP X + 2 ,RS

44

The computer then types

DY/DX = 2EXp x + 4 m P x + ~ X P x

2 x which is the second derivative of Y = X e + 2X + 100.
The symbolic differentiation program can differentiate (only with

respect to X) any transcendental function of several variables written

in terms of trigonometric, exponential, hyperbolic, logarithmic, or

algebraic functions.

Expressions which are to be differentiated must contain only

mathematical operators and operands, +, -, S I N , Y INT, etc. The only

permissable exceptions are the period, and decimal pt.

45

IX. CONSOLE PROGRAMMING

46

IX. CONSOLE PROGRAMMING

INTRODUCTION

Up to this point in the manual, the Sampler has been presented

as carrying out operations immediately as they are entered.

provisions have been described whereby the operational sequences can

be retained for future use.

the programming capabilities of AMTRAN which give the system its power

and flexibility and enable it to accommodate the logical syntactical

language of mathematics.

Also, no

It is therefore necessary to introduce

Included in the programming capabilities provided in the Sampler

is a common list of arithmetic operators that are used just as they

would be in mathematics; trigonometric functions, hyperbolic and

inverse trigonometric functions, exponential and logarithmic functions,

powers, absolute value, left and right shift, running summation,

generation of independent variables over a finite numerical range with

a specified number of intervals, integral, derivative, lessthan, exceeds,

and subscripting. In addition, there is an IF operator for testing

expressions, editing capabilities for correcting programs, card &

typewriter for input & output, and many other features. There also

exist a group of instructions that tell the computer how to modify

47

console programs during execution.

and ope ra to r s i n a lphabe t i c o r d e r , the use r should consu l t Appendix B.

For a complete l i s t of i n s t r u c t i o n s

Any sequence of these o p e r a t o r s o r i n s t r u c t i o n s grouped toge the r

The term "console f o r a p a r t i c u l a r reason can be considered a "program,"

program'' r e f e r s t o any use r -wr i t t en program o r t o any program included

i n the Sampler's subrout ine package (Sect ion X I I) .

PROGRAMMING MECHANICS

After the Sampler deck has been read i n t o the computer, c o n t r o l i s

automatical ly t r a n s f e r r e d t o the typewr i t e r which w r i t e s :

ENTER PROGRAM

1.

The user then e n t e r s h i s expressions and ope ra t ions . I f a s i n g l e

expression does not f i t on one l i n e , i t can be continued on the next

l i n e by r e tu rn ing the c a r r i a g e o f t he typewr i t e r . Af t e r a complete

statement has been w r i t t e n and the ".RS" e n t e r e d , the computer auto-

ma t i ca l ly renumbers f o r the next i n s t r u c t i o n .

Once t h e s e r i e s o f s ta tements required f o r the s o l u t i o n o f a

p a r t i c u l a r problem have been completed, the s e t of i n s t r u c t i o n s can

be named. A f t e r t h i s des igna t ion h a s occurred, t he computer au tomat i ca l ly

r ead ie s i t s e l f t o r ece ive another program, and aga in types:

ENTER PROGRAM

48

I n t h i s way, programs can be w r i t t e n one r i g h t a f t e r the o t h e r .

p re sen t 40K system allows a s many a s 75 console programs t o be w r i t t e n

and entered a t one time.

The

SPECIAL PROGRAMMING CAPABILITIES

NAME -
Once a s-equence of commands (or console program) has been

w r i t t e n , it can be s tored i n the computer with the i n s t r u c t i o n

NAME followed by a continuous mnemonic l a b e l of no t more than 60

alphanumeric c h a r a c t e r s and with the s t i p u l a t i o n t h a t i t does not

d u p l i c a t e any o f those l a b e l s inherent i n the system (see Appendix

B) o r any previously assigned t o another program. If t he name

of a program d u p l i c a t e s t h a t of another , the computer au tomat i ca l ly

types the e r r o r message:

-

ERROR-DUPLICATE LABEL, PLEASE REENTER STATEMENT,

A console program l a b e l , must begin with a l e t t e r , bu t can

a l s o include numbers i n i t s dec la ra t ion . The a c t u a l name of a

program i s completely a mat ter of preference and can be assigned

any mnemonic l a b e l e a s i l y remembered.

T o i l l u s t r a t e the use of t he - NAME i n s t r u c t i o n , consider the

following example: A program t o i n t e g r a t e the exponent ia l of X

over t h e range 0 5 X ,< 5 w i t h 50 i n t e r v a l s (A X = 0.1) and

49

t o r e t a i n the r e s u l t i n the system t o use i t again, would have

the form:

1. RANGE OF X , 0 , 5, 50 .RS

2. INT EXP X = Y.RS

3 . NAME INTEXP,RS

Henceforth, t o c a l l the i n t e g r a l of t he exponent ia l of X (

0 5 x 5 10, A x = .l) the mnemonic INTEXP i s typed.

e d x , I x
Programs can be nested i n s i d e each o t h e r , i . e . , one program

can c a l l another one i n the system, A s many a s 8 l e v e l s of n e s t i n g

a r e permitted. For example, INTEXP c a l l s INT which c a l l s FORWARD.

The mnemonic l a b e l of a program cannot occur before it has been

declared i n the NAME i n s t r u c t i o n ; and t h e r e f o r e , a program cannot

c a l l i t s e l f .

I n c a l l i n g nested programs, s p e c i a l a t t e n t i o n should be given

t o changes i n v a r i a b l e s wi th in these l e v e l s of program nes t ing .

To i l l u s t r a t e : Suppose t h a t t he following program i s w r i t t e n

1. RANGE OF Y , 10, 20, 100 .RS

2 . RANGE OF X , 0 , 10, 100 .RS

3 . INT EXP X + Y = Z.RS

It i s remembered t h a t statement 2 and INT EXP X of 3 . have a l r e a d y

been programmed i n the console program INTEXP. Therefore , statement

2 . i s de l e t ed and the t h i r d s ta tement changed t o read 3 . INTEXP + Y = Z.RS

50

But, i n the program INTEXP, INT EXF' X = Y. Therefore , the Y i n

statement 3 . w i l l not be 10 5 Y 5 20, A y = . l , but r a t h e r t he Y

i n program INTEXP.

The above example i l l u s t r a t e s t h e f a c t t h a t a l l of t he v a r i a b l e s

(A-Z) used i n the Sample a r e global .

a r e used and ca l l ed by the same name i n a l l subrout ines .

This i s t o say, t h a t they

READ -
The READ i n s t r u c t i o n t r a n s f e r s cont ro l from the typewri te r t o -

the card reader . This opera tor can be typed a t any time t h a t the

use r chooses t o e n t e r a console program o r programs punched on

cards .

PUNCHOUT

Hard copy of a console program can be obtained by typing

PUNCHOUT, followed by i t s name, causing the program t o be punched

ou t on cards i n source language. Consider the program INTEXP.

The i n s t r u c t i o n f o r ou tpu t t ing t h i s on cards would be:

1. PUNCHOUT 1NTEXP.M

By making a compound statement

1. PUNCHOUT ALL,RS

a hard copy (punched card deck) can be obtained of a l l the console

programs i n the system a t the time the i n s t r u c t i o n i s given. Each

51

punched program c a r r i e s i t s own mnemonic l a b e l . This gives a

separable form of console program output so t h a t a card f i l e

l i b r a r y of console programs can be e s t a b l i s h e d .

combination of these programs i n t o the system a t some f u t u r e t ime,

t he user would place the des i r ed deck i n the card r eade r and type

To r e e n t e r any

READ. RS

This procedure would r e i n s e r t i n t o the computer the console program

s e t which has been loaded from the r eade r .

DUMP i s used i n the same manner a s PUNCHOUT, except t h a t i t -
gives a typewri ter p r i n t o u t of a program. DUMP ALL w i l l e l i c i t

a typeout of a l l e x i s t i n g programs i n core .

LIST -
To determine the s e l e c t i o n of console programs w i t h i n t h e

computer a t any t ime, a typeout of the console programs' mnemonic

l a b e l s can be obtained by en te r ing :

1. LIST. RS

Consider the hypo the t i ca l case i n which a program i s w r i t t e n

r equ i r ing the i n t e g r a l of a funct ion. To determine i f ' t h e program

which allows i n t e g r a t i o n i s i n the system type:

1. LIST.RS

52

A l is t o f console program l a b e l s i s displayed f o r the u s e r ' s

inspec t ion . I f the mnemonic INT i s found, the system con ta ins

the i n t e g r a t i o n subrout ine and w i l l p roper ly i n t e r p r e t the INT

mnemonic l a b e l . It must a l s o be ascer ta ined t h a t nested programs

ca l l ed f o r by the LIST declared programs a r e i n the computer. For

example, INT c a l l s the program FORWARD. Therefore, i t i s not

enough t h a t INT be i n the - LIST dec la ra t ion , but t h a t FORWARD a l s o

be t h e r e .

-

DELETE

A console program i n the system can be eliminated a t any time

wi th t h e i n s t r u c t i o n DELETE followed by the name of the program.

By cons t ruc t ing a compound statement,

1. DELETE ALL .RS

a l l o f the console programs i n t h e system a t the time can be

des t royed .

Dele t ing a program f r e e s the mnemonic c a l l l a b e l and the

assoc ia ted core a r e a , which can therefore be used t o s t o r e another

program.

I f Sense Switch 2 is i n the''on"position when a program i s

d e l e t e d , t he computer w i l l type out the number of core l o c a t i o n s

l e f t i n the console program storage a rea .

53

EDIT -
Unlike the DELETE operator, which destroys an entire program,

the EDIT instruction is used to change or delete statements in

programs that have already been written.

-

To change or delete a statement, the EDIT mnemonic is entered,

followed by the name of the program and the statement number.

Suppose that, after having written a program, called EXAMPLE,

it is decided for some reason that statement 3 should be changed.

The instruction is:

EDIT EXAMPLE 3. RS

The computer deletes this statement in the program, types a 3 .

and then waits for the new or corrected statement to be entered.

To delete the statement without entering a replacement, a ".RS"

is typed.

The EDIT operator can also be used to add statements to a -
program by converting a single statement into a series of statements,

each separated by a comma. For example: To insert a statement

between statements 3 and 4 of program EXAMPLE, rewrite statement

3 under the EDIT instruction terminating it with a comma instead

of a period. Following the comma, insert the statement or statements

required between statements 3 and 4.

-

54

(the original program EXAMPLE)

ENTER PROGRAM

1. RANGE OF X, 1, 2 , 1 O . S

2. RANGE OF Y , 2 .2 , 3 .2 , 1O.W

3. X SQ + Y SQ = Z .RS

4 . SQRT Z = T .RS

5. NAME EXAMPLE .Rs

ENTER PROGRAM

1. EDIT EXAMPLE 3 .RS

(statement 3 with Z SQ = Z added)

3. X S Q + Y S Q = Z , Z S Q = Z . RS

The same insertion could have been made by rewriting statement 4 ,

preceeding it with Z SQ = Z .

EDIT EXAMPLE 4 .RS

4 . Z SQ = Z , SQRT Z = T .RS

RESET -
The RESET instruction is mentioned here because it allows the

destruction of a program before it has been completely named. If,

after having written, say, 6 instructions for a program, the users

finds that he is completely wrong in his logic or approach, he can

type

RESET .RS

55

a s h i s 7 t h statement.

w r i t t e n s ince the l a s t ENTER PROGRAM d e c l a r a t i o n . It does n o t ,

however, wipe out any d a t a from constant r e g i s t e r s o r funct ion

a r r a y s .

This completely wipes out what has been

CORE

By e n t e r i n g CORE.RS a statement a s t o the number of unused

core loca t ions remaining i n the console program s to rage a rea

can be obtained. A s a r e p l y t o t h i s i n s t r u c t i o n the computer

types

XxxXX OPERATIONS LEFT.

Where XMXX i s a 5 d i g i t number.For each ope ra t ion l e f t , one

operator o r r e g i s t e r can be en te red . Example:

SIN X r e q u i r e s 2 l o c a t i o n s

A + B r e q u i r e s 3 l o c a t i o n s

DISPLAY T r e q u i r e s 2 l o c a t i o n s

This l abe l i s p a r t i c u l a r l y u s e f u l i n determining the remaining

core space ava i l ab le f o r console programs.

EXIT -
The EXIT mnemonic causes computer c o n t r o l t o be t r a n s f e r r e d -

o u t of the program i n which i t appears . To i l l u s t r a t e cons ide r

t he following program:

56

1. 3.45 = A. RS

2. RANGE OF X, 7, 8, 10. RS

3 . X SQ + X/(A SQ) + 1/A = Y.RS

4 . DISPLAY Y.RS

5. IF A LESSTHAN = 4 , THEN A + .01 = A AND GO TO 3,
OTHERWISE EXIT .RS

6 . NAME POLYNOMIAL .RS

In the program POLYNOMIAL, Y is computed for 3 .45 5 A 5 4 , OA = .01.

Statement 5 tests A to determine if it is in this range. When A

becomes greater than 4 , the EXIT mnemonic in the OTHERWISE clause

will cause a branching out of the program POLYNOMIAL.

branch has occurred the typewriter types:

Once the

ENTER PROGRAM

1.

and waits for a new series of statements to be entered.

The EXIT operator can also be used in the THEN clause of an

IF test. Where functional arrays are concerned in the IF test,

it should be remembered, that as soon as an EXIT is encountered

in the T" clause (for a valid IF) or in the OTHERWISE (for an

invalid IF), computer control branches out of the program and

does not return to test the remaining array values.

-

The EXIT mnemonic. can only be employed when the computer is in

the suppressed mode of operation (consult the next section under

57

Console Programming e n t i t l e d ''Modes of Operation" f o r a d e t a i l e d

d e s c r i p t i o n of t h i s mode).

REPEAT

As previously explained i n the s e c t i o n on Logic Operators (V I I)

t he REPEAT mnemonic can be used t o r epea t a s e r i e s of d i r e c t l y

declared mathematical s ta tements (the maximum number of times a

statement can be repeated i s 999). It i s a l s o poss ib l e t o r e p e a t

a console program a spec i f i ed number of t i m e s , thus i n d i r e c t l y

dec la r ing a sequence of i n s t r u c t i o n s and mathematical expressions.

The i n s t r u c t i o n given i s "REPEAT N" , followed by the program's

mnemonic name. ("is the number of t imes the program i s t o be

repeated) . To r e p e a t the program EXAMPLE 10 t imes e n t e r :

1. REPEAT 10, EXAMPLE .RS

Note: The REPEAT mnemonic can only be entered i n the suppressed

mode.

TRANSFER

The TRANSFER ope ra to r is used whenever i t is necessary t o

move symbols about i n a program o r between d i f f e r e n t programs.

It i s employed by the i n s t r u c t i o n , TRANSFER J TO K, where J and K

a r e va r i ab le program l i n e p o s i t i o n s . To t r a n s f e r symbols w i t h i n

.j and K = k .k such t h a t j = statement
j l 2 1 2 1

a program J =

number = k

pos i t i on = k2 (j2 and k

(j, and k a r e not n e c e s s a r i l y equal). and j -symbol

2

1 1 2-
a r e n o t n e c e s s a r i l y equal) . A symbol

58

position is required for each of the following: a mnemonic label,

coma, parentheses, period, mathematical operator, register, and

a single numerical digit. For Example:

2. SIN (3.2 DEGREES) = A.=

The SIN occupies the first symbol position, and A the ninth

symbol position. To move SIN, the instruction would be:

TRANSFER 2.1to

and to transfer DEGREES

TRANSFER 2.6 to

To complete the discussion of the TRANSFER instruction consider

the following two statements:

2. SIN (3.2 DEGREES) = A.RS

3. SQRT (ATAN (10 DEGREES)-A) = B,RS

To transfer SIN (sine) in statement 2 to ATAN (arc tangent) in

statement 3 the entry would be:

TRANSFER 2.1 to 3.3.RS

After the transfer has occurred, statement 2 remains unchanged,

but statement 3 now reads:

3. SQRT (SIN(10 DEGREES)-A) = B.RS

59

This i l l u s t r a t e s the f a c t t h a t when a t r a n s f e r occurs , the l i n e

and symbol p o s i t i o n to. the l e f t of the TO r e t a i n s t h a t symbol i t

held p r i o r t o the TRANSFER i n s t r u c t i o n .

on the r i g h t s i d e of the TO i s replaced.

Only the symbol declared

It should be noted t h a t a t r a n s f e r can only occur on a one

t o one b a s i s . For example, t he 10 i n statement 3 cou ldn ' t be

t r a n s f e r r e d t o the place occupied by the 3.2 i n statement 2 and

v i c e v e r s a , because the 10 t akes two symbol p o s i t i o n s , while 3.2

r e q u i r e s th ree symbol p o s i t i o n s ,

To move a symbol between programs the mnemonic name of the

two programs must be introduced i n the TRANSFER i n s t r u c t i o n .

I n the preceeding example, i f statement 2 had been i n program

TEST and statement 3 had been i n program TRIG, then t o r ep lace

MODES OF OPERATION

Depending on the ope ra t ing mode of the computer, the u s e r ' s commands

a r e stored with o r without simultaneous execut ion. Two modes of

ope ra t ion a r e a v a i l a b l e i n the Sampler, an execut ion mode and a suppressed

mode.

60

>

t he ATAN with the SIN, the i n s t r u c t i o n would have been:

1. TRANSFER TEST 2 . 1 TO TRIG 3.3.RS

The TRANSFER o p e r a t o r , l i k e t h e EXIT mnemonic, can on ly be

used i n the suppressed mode.

The execution mode is the normal state of operation for the

computer. A s each statement is entered, it is immediately executed.

There are seven mnemonic restrictions in this mode: the GO TO, EXIT,

REPEAT, TRANSFER, ENfER, ENTRY, and INPUT instructions cannot be used.

The suppressed mode allows the entry and storage of a program

into the computer without the simultaneous execution of its statements.

To achieve this state, type

SUPPRESS. RS

to which the computer replies

ENTER PROGRAM- SUPPRESSED

1.

This mode allows the user to write a complete program without taking

the time between instructions for execution. Having written and

named the program, the user can choose t o execute it simply by entering

its label followed by a ".RS". Once a program written in the suppressed

mode is named, the computer automatically drops out of this mode and

waits for a new program to be entered in the execution mode. If at

any point before the NAME instruction, the user wants to transfer to

the execution mode, he types EXECUTE .RS.

GENERAL PURPOSE PROGRAMS

Up to now, the user has been inputting all of his information

into the computer as he writes a program. It is possible, however,

61

t o wr i te a general program i n which input va lues and mathematical

expressions a re entered only a t execut ion time. This a l lows the

cons t ruc t ion of general-purpose macro-instruct ions which can be used

wi th a r b i t r a r y operands. The general-purpose programing i s made

poss ib le by two AMTRAN i n s t r u c t i o n s : INPUT and ENTER.

To i l l u s t r a t e the use of the INPUT mnemonic, consider the example

INTEXP.

s t e p s i z e of X could be used, t he use r could have wr i t t en :

To make t h i s a genera l purpose program where any range and

1. RANGE OF X INPUT, INPUT, INPUT.RS

2.

3 . NAME INTEXP, RS

INT EXP X = Y,RS

The mnemonic INPUT causes the computer t o branch ou t of the console

program INTEXP and t o come t o the typewri te r f o r an e n t r y , Here,

the computer w a i t s # f o r the minimum value of X , the maximum value of X ,

and the number of i n t e r v a l s i n the range of X t o be en tered . Af t e r

these e n t r i e s have been made, a ".RS" o r a ",RS" must be typed t o

r e t u r n con t ro l back t o the console program.

The INPUT opera to r can be used f o r any cons t an t o r mathematical

expression t h a t changes wi th each execut ion of a program.

expression of more than one term mus t be enclosed i n parentheses when

entered. To i l l u s t r a t e consider t he fol lowing 2 examples:

A mathematical

To input a cons tan t :

ENTER PROGRAM- SUPPRESSED

1, SIN INP'LJT = A . RS

62

2. 1 / A = K,RS

3. DISPLAY K.RS

4 . NAME csc.Rs

,
I To c a l l (or execute) the program CSC the e n t r y would be:

I 1. csc Rs

(Note:

declared before the RS). -The computer w i l l then begin t o execute the

program CSC u n t i l the INPUT i n s t r u c t i o n i s encountered.

c o n t r o l i s t ransfer red t o the typewri ter t o accept the input value

(say .171).

be typed a f t e r the en t ry .

The computer must be i n the execute mode, and no period i s

Then computer

To r e t u r n cont ro l back i n t o the program a r'mRS'' must

A s an a l t e r n a t e method of executing the program, the input value

Example: can be declared immediately a f t e r the program l abe l .

1. CSC .171 .RS

I f a program con ta ins severa l input values , they can a l l be entered

a f t e r the program name provided t h a t each e n t r y is followed by a

comma. Consider the program:

ENTER PROGRAM- SUPPRESSED

1. SIN INPUT = A.RS

2. COS INPUT = B.RS

3. TAN INPUT = C.RS

63

4 . 1 / A = K.RS

5. 1 / B = L.RS

6. 1 / C = M.RS

7. DISPLAY K, DISPLAY L, DISPLAY M.RS

8. NAME TRIG.RS

To execute t h i s program and input the cons tan ts (.171, .333,

1.956) type :

1. TRIG .171 , .333, 1.956.RS

To input a mathematical expression:

I f i n t h e program CSC the e n t r y had been 13 DEGREES, t h i s i s considered

a mathematical expression and must be enclosed i n parentheses . For

Example :

1: CSC (13 DEGREES) .RS

I f "SIN INPUT = XI' i n program CSC, then a poss ib l e input might be:

1. CSC ((Y SQ + ABS Y)DEGREES) .RS (where Y has been
previously def ined)

The ENTER mnemonic, the AMTRAN Sampler 's o t h e r general purpose

program f e a t u r e , permits the e n t r y of a complete mathematka l expression

o r "code s t r ing" . The mnemonic ENTRY i s used i n conjunct ion wi th

ENTER, t o execute an ENTER declared s ta tement . Example:

64

ENTER PROGRAM- SUPPRESSED

1. RANGE OF X, 1, 2 , 20.RS

2. ENTER. RS

3 . REPEAT 5, ENTRY AND A + 1 = A,RS

4 . DISPLAY Y,RS

5. NAME EQUATION.RS

The ENTRY in statement 3 causes the execution of the expression entered

in statement 2, and repeats the computation, changing A five times.

If ENTRY had been an INPUT the expression would have to be entered

manually from the typewriter before each computation. Herein lies

the difference between the ENTER and INPUT.

typed once under the ENTER instruction, and then referenced and manipulated

by the ENTRY mnemonic without having to type that expression each time

it is used.

preceeding it.

INPUT, the computer requires a typed value each time the mnemonic

label INPUT is encountered.

An expression can be

An ENTRY always refers to the ENTER expression just

However, when entering an expression or constant under

T o execute the program EQUATION and input the expression

Y = x2 - 7.3 x + 99

the user would type:

1. EQUATION RS

65

The computer then proceeds t o execute the program u n t i l i t comes

t o the mnemonic ENTER, Then computer con t ro l comes t o the typewri ter

t o accept t he mathematical expression
~

X SQ - 7 . 3 X + 99 = Y,RS

(The ".RS" r e t u r n s con t ro l back t o the program)

An a l t e r n a t e method of e n t r y would be t o dec la re the statement

immediately a f t e r the program name. Example:

1. EQUATION X SQ - 7.3 X + 99 = Y.RS

Note: The ENTER mnemonic can only be declared i n the suppressed mode.

PROGRAMMING LEVELS

The concep t ,o f programming l e v e l s i s o f s p e c i a l importance when

considering the n e s t i n g of programs.

the a b i l i t y f o r the bu i ld ing of high l e v e l o p e r a t o r s which g r e a t l y

extend the i n t r i n s i c AMTRAN Sampler i n s t r u c t i o n s e t . This a b i l i t y

encourages block programming i n which segments of a program a r e w r i t t e n

and checked a block a t a time and then combined t o c r e a t e more complex

programs.

The n e s t i n g o f programs provides

The INPUT operator embedded i n a nested program g ives a graphic

i l l u s t r a t i o n o f l e v e l s o f program n e s t i n g .

op t i c s associated with r ec t angu la r s l i t d i f f r a c t i o n p a t t e r n s :

Consider a problem i n

the F resne l

66

I n t e g r a l s which give the x and y coord ina tes a long t h e Cornu s p i r a l .

The fol lowing a r e two programs which generate the FRESNEL i n t e g r a l :

ENTER PROGRAM- SUPPRESSED

1.

2. NAME PRESNELSINE .RS

INT SIN (PI INPUT SQ/2).RS

and

ENTER PROGRAM- SUPPRESSED

1. IMT COS (PI INPUT SQ/2) .RS

2. NAME FRESNELCOSINE.RS

The FRESNELSINE and FRESNELCOSINE programs a r e considered he re t o

be mainl ine or on the 1st l e v e l of nes t ing programs.

INT which i s t h e r e f o r e on t h e 2nd l e v e l of nes t ing .

which becomes a 3 r d l e v e l of nes t ing .

They both c a l l

INT c a l l s FORWARD,

Consider a t h i r d program which c a l l s the previous two.

ENTER PROGRAM- SUPPRESSED

1. RANGE OF T, INPUT, INPUT, INPUT,RS

2. FRESNELCOSINE T = X.RS

3. FRESNELSINE T = Y,RS

4 . DISPLAY X , DISPLAY Y.RS

5. NAME CORNU.RS

In the program CORNU, FRESNELSINE and FRESNELCOSINE become the

second l e v e l of nested programs, and CORNU the f i r s t .

67

When the FRESNELSINE i s a mainline program, the INPUT opera tor

causes the computer t o come t o the typewri te r and accept an en t ry .

This i s a l s o t r u e i n the FRESNELCOSINE program. Now consider the

program CORNU. The INPUT ope ra to r s i n statement 1 cause the computer

t o come t o the typewri te r and accept a maximum value , minimum value ,

and i n t e r v a l number f o r T. I n s ta tements 2 and 3 , the computer branches

t o the declared programs. This t ime, when the INPUT opera tor i s

encountered i t does not cause the computer t o branch t o the typewr i t e r ,

bu t r a t h e r up i n t o the C O W program where the T a r r a y i s taken a s the

INPUT.

Programming l e v e l changes have occurred i n the previous example.

Program nes t ing i s equiva len t t o program l e v e l s , bu t the l a t t e r term

i s used t o c l a r i f y the movement of computer con t ro l a s it branches

from console program t o console program. Every time the INPUT ope ra to r

i s used, i t causes the computer t o move u p one l e v e l (or program).

Therefore an INPUT declared i n an embedded program, w i l l cause the

computer t o move up one l e v e l t o the program i n which i t i s nested and

look for i t s argument. This i s t r u e f o r a l l the poss ib l e 8 l e v e l s of

program nes t ing .

I n nested programs which r e q u i r e i n p u t , a v a r i a b l e o r an INPUT

m u s t be declared a f t e r the subrout ine l a b e l . To i l l u s t r a t e :

I n CORNU both FRESNELSINE and FRESNELCOSINE d e c l a r e a T

a f t e r t h e i r mnemonics. I f t he use r had n o t wanted t o draw the T

value from the CORNU program, but r a t h e r from the typewr i t e r , he would

1
1

I

I

I

i

I
I

I

i
I

I

68

have entered INPUT instead of T. That i s ,

FRESNELSINE INPUT. RS

FRESNELCOSINE INPUT.RS

69

x, INPUT/OUTPUT

Two types of input and output are available with the AMTRAN I

Sampler: card and typewriter. Both require that the basic interpretive

Sampler card deck be first read into the computer. After this is done,

the typewriter will type

ENTER PROGRAM

1.

signaling that the system is ready to accept mathematical equations

or instructions. A standard package of console programs (Section XII)

can be read into the computer immediately after the basic interpretive

Sampler card deck. These are:

FORWARD Computes the forward difference.

RANGE OF Generates an array over a specified interval and step

INT

DERIV Takes the numerical derivative.

TYPEOUT Gives a typewriter display of equation and results.

SET Inputs data in any format.

size.
Numerically integrates the expression following it,

71

For a complete d e s c r i p t i o n of t hese subrout ines , see Sec t ion XI1

e n t i t l e d "Programs i n the AMTRAN Sampler Subroutine Package:.

INPUT/OUTPUT OF CONSOLE PROGRAMS

To inpu t a console program punched on c a r d s , the i n s t r u c t i o n

1. READ .RS

must be entered a t the typewr i t e r . Any number of console programs can

then be read i n t o the computer one immediately following the o t h e r .

I f the programs a r e t o be executed a s they a r e read i n , a card with

the mnemonic EXECUTE punched i n columns 7 - 14 m u s t be placed a t t he

beginning of the program deck, otherwise, a l l programs a r e read i n the

suppressed mode. Programs with a GO TO, ENTER, TRANSFER, ENTRY,

REPEAT, EXIT, o r an INPUT cannot be entered under the EXECUTE card

heading. A t the end of the deck of programs t o be read i n the re must

be a card with the l a b e l END punched i n columns 7 - 9. This card

r e t u r n s c o n t r o l t o the typewr i t e r . I n a l l card input s ta tement

numbers a r e r e s t r i c t e d t o columns 1 - 6 and s ta tements o r d a t a t o

columns 7 - 80.

Card output of a console program can be obtained (1) wi th the

PUNCHOUT i n s t r u c t i o n , followed by the name of the program o r (2) with

PUNCHOUT ALL which gives a card source deck of a l l the console programs

i n the system. These ca rds may then be passed through an IBM keypunch

f o r l abe l ing purposes.

7 2

Typewriter i n p u t o f a console program i s anything t h a t the u s e r

e n t e r s from the keyboard between the typewri ter message:

ENTER PROGRAM

and the NAME i n s t r u c t i o n . Typewriter output of a console program i s

obtained by a DUMP i n s t r u c t i o n followed by the name of the program.

INPUT AND OUTPUT OF DATA

For the inpu t of da t a on ca rds , there i s a s p e c i a l console

program named SET contained i n the Sampler subrout ine package. The

u s e r needs t o e n t e r , beginning i n column 7 of the card:

1. The name of t he subroutine SET

2 . A space

3 . The number of d a t a po in t s followed by a comma

4 . The da ta p o i n t s one a f t e r the o t h e r and each separated
by a comma

5. A period a f t e r the l a s t da t a po in t

To i l l u s t r a t e , consider the following example: To e n t e r an a r r a y of

seven va lues i n t o the X r e g i s t e r t he user types "READ .RS" and then

r eads i n the SET program. A l l c a rds are automatical ly read i n the

suppressed mode un le s s otherwise spec i f i ed . To execute SET and inpu t

d a t a on ca rds an EXECUTE card i s placed a f t e r the l a s t card i n

subrout ine S e t followed by a card i n t h i s format:

73

D D O O C O 0 O U I O O C O O 1 0 0 1 0 0 o o o a o o m o o o o o o o o u ,
I 2 3 4 5 I I I 9 I1 I I I2 I1 14 Is I8 l i It II 21 21 n 21 24 n n 2I 21 ll n 31 I! I1 Y 35 II 11 It IS 41 41 42 43 U 45 46 41 4: 41 51 5' "

1 1 ' 1 1 1 1 1 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ 1 1

2 2 2 1 ' 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 1 3 3 3 3 3 3 3 3 ' 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 .

4 4 4 4 4 4 4 1 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ ~

5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 ~ 6 C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 C C C E 6 6 C 6 6 6 6 6 6 6 C 6 6 6 6 6 6 6 6 ~ f

' 1 1 7 7 7 7 7 7 1 7 7 7 1 1 7 7 1 7 7 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 7 1 1 1 7 1 7 ~

t a 8 8 8 a : a t t t a 8 81: a a a I: a a : a a 1 8 : : t a t o 8 : : 1 o u t ~

9 9 5 5 5 5 ¶ 5 1 9 ! 1 1 1 9 5 5 ¶ J S S S 9 J 9 S S a S $ S S S 9 S 9 ¶ I S) J S J 0 9 5 0 9) S
I I 4 I I I I 9 II I I 11 II 14 15 II 1. II 11 n 21 22)I 14 21 21 21 21 21 n 11 u 11 u u n 11 n 19 41 41 41 41 u u 41 41 u 41 Y SI i

~ R F hnn.

Note: Input values can be i n any format. Subroutine SET reads

a l l input values i n t o the X a r r ay .

p o i n t s read i n the use r should address the X a r r a y (X SUB 0 w i l l

contain the f i r s t input va lue , X SUB 1 t h e second, and e t c .) .

Therefore, t o r e fe rence the d a t a

To i npu t da t a while a t t he typewr i t e r subrout ine SET i s c a l l e d

a s a nested console program.

from the typewr i t e r a t execut ion time the mnemonic INPUT is dec la red

a f t e r SET. For example:

I f the d a t a va lues a r e t o be entered

ENTER PROGRAM- SUPPRESSED

1. EXP SET INPUT = Z,RS

2. SQRT Z - 6 3 . 2 Z POWER 10. RS

74

3 . CARD RESULTS .RS

4 . NAME DATAEXAMPLE .RS

To execute the program DATAEXAMPLE and input t h a t s e t of va lues

given i n the previous example on card input , the i n s t r u c t i o n would be:

ENTER PROGRAM

1. DATAEXAMPLE 7 , 1, 2.719, 3 , 4 . 4 , 60, 50000, 123 .RS

The f i r s t e n t r y (a 7 i n t h i s example) declared a f t e r the program

name must always be the number of da ta points .

Statement 1 i n progran DATAEXAMPLE causes the exponential of the

input values t o be s tored i n the Z r e g i s t e r . Statement 3 . gives

the r e s u l t of statement 2 on cards . I f the expression had been

2. SQRT Z - 63 .2 Z POWER IO = Y.RS

then s ta tement 3 could have been entered as :

3 . CARD Y. RS

The i n s t r u c t i o n CARD can be used t o o b t a h the output of any r e g i s t e r

(a cons t an t o r a funct ion) on c a r d s . I n the case of a func t ion , two

a r r a y va lues a r e punched per card.

The corresponding mnemonic f o r typewri ter output of a cons t an t

o r a r r a y i s DISPLAY.

i n s t r u c t i o n would be

For typewri ter output of statement 2 . , the

3 . DISPLAY RESULTS.RS

75

or, i f the expression had been

2 . SQRT Z - 63.2 Z POWER 10 = Y,RS

statement 3. could have been:

3. DISPLAY Y,RS

The typewri ter output of a func t ion r e g i s t e r can be f u r t h e r con t ro l l ed

wi th console Sense Switch 2(S,S,2). I f S.S.2 i s i n the "on" p o s i t i o n ,

a l l values of the a r r a y w i l l be typed, and i f i n t he "off" p o s i t i o n ,

only the l a s t value of the a r r a y w i l l be given.

O u t p u t i s displayed a s :

X SUB 0 =

X SUB 2 =

X SUB 1 =

X SUB 3 =

FORMAT CONTROL

Since the SET subrout ine permits da t a t o be entered i n any

mixed format, format s ta tements a r e no t required i n AMTRAN f o r t he

inpu t of values . The comma s e p a r a t i n g each number t e l l s the computer

t h a t a new value i s being en te red , and a period a f t e r t he l a s t value

designates the end of a sequence. A l l card and typewr i t e r output

of da t a is automatical ly given i n f l o a t i n g po in t n o t a t i o n wi th 8

s i g n i f i c a n t d i g i t s punched o r typed 2 da t a p o i n t s per card or l i n e .

76

To output va lues i n a d i f f e r e n t format (a s , f o r example, i n

obta in ing t a b u l a r r e s u l t s) , format con t ro l s ta tements a r e provided

i n the Sampler. The symbols @ (a t s ign) and $ (d o l l a r s ign) ,

used i n conjunct ion wi th the mnemonic TYPE o r PUNCH, des igna te

format con t ro l . Three d i f f e r e n t types o f formated numerical ou tput

a r e a v a i l a b l e i n the Sampler.

The f i r s t type i s ca l l ed a " l e f t j u s t i f i e d f ixed f i e l d format"

and i s designated by an (3 sign.

such t h a t A holds the value .00000016790924. To ob ta in the conten ts

of A i n a l e f t j u s t i f i e d fixed f i e l d format, A is preceded by an @.

The i n s t r u c t i o n t o the computer would be:

Consider t h e constant r e g i s t e r A

TYPE A = @A.RS

The computer's typewri t ten response is:

A = -16790924 * 10 POWER(-5)

The TYPE mnemonic i s used t o p r i n t ou t cha rac t e r s and s ta tements a s

comments o r documentary (see the next s ec t ion on "Comment Statements".

Therefore , TYPE A = , causes the computer t o type the two cha rac t e r s

"A = .It Note: The s i z e of the fixed f i e l d under the @ formating

al lows t h e output of two va lues per l i n e of type.

"Decimal j u s t i f i e d fixed f i e l d " formating is provided by t he

$ sign.

the numbers around it accordingly.

This type of formating f i x e s the decimal po in t and d i s t r i b u t e s

I f a s e r i e s of values a r e t o be

77

ou tpu t t ed , t h i s format l i n e s up a l l the decimal p t s . and exponents

one under the o the r . For example: Consider the following a r r a y

values contained i n the X r e g i s t e r :

X o = .0000016790924

X1 = .0000010548213

X2 = .00000041004291

X3 = .000000089997612

To output these va lues i n a decimal j u s t i f i e d format type:

TYPE X = $X .RS

The computer then responds by typing:

X = .16790924 Jc 10 POWER(-5)

X = .lo548213 i'c 10 POWER(-5)

X = ,41004291 Jc 10 POWER(-6)

X = .899997612 Jc 10 POWER(-7)

Note: The s i z e of the fixed f i e l d under the s i n g l e $ format con t ro l

permits one output value per time o f type.

"Variable" formating i s provided by the use of more than one $,

where each d o l l a r s ign d e f i n e s a decimal p lace . A s an example,

consider the constant r e g i s t e r B where B ho lds the value 22.779.

Depending on the v a r i a b l e format d e s i r e d , t he use r would i n s t r u c t

78

the computer t o :

TYPE B = $$B,RS

t o which the computer responds:

B = 23

o r TYPE B = $$$.B .RS

t o which the computer responds:

B = 2 2 . 8

t o which the computer responds:

B = 22.779

Note: An e x t r a place should always be provided f o r the s i g n of a

number (e i t h e r plus o r minus). Also, the r e g i s t e r name d e c l a r e s a

decimal place.

on the s i z e of each f i e l d .

The number of output va lues per l i n e of type depends

I f formated output i s wanted on cards instead of from the type-

w r i t e r the mnemonic TYPE i n the above examples should be replaced by

the mnemonic PUNCH.

79

COMMENT STATEMENTS

There are three possible comment statements available in the

AMTRAN Sampler, two for card, and one for the typewriter. The TYPE

instruction followed by a message is used for typewriter comments.

During execution, the statement following a TYPE is printed by the

typewriter. Example:

ENTER PROGRAM

1. TYPE THIS PROGRAM COMPUTES THE INTEGRAL OF THE

TYPE EXPONENTIAL OF X OVER THE RANGE FROM 0 To 1 WITH

TYPE AN INTERVAL S I Z E OF 10 .RS

2 . TYPE WHEN THF: COMPUTER PAUSES ENTER THE RANGE AND

TYPE INTERVAL S I Z E OF X,RS

For the card input of comments the user punches a C or a W in

column 1 followed by a message beginning in column 7 . The "C" card

is ignored by the computer and can therefore be used to document a

program. The "W" card causes a typewritten printing of its message

and hence is similar to the TYPE instruction.

It should be noted that extensive comment statements use a lot

of program core storage area. It is, therefore, a good idea to keep

comments brief and concise.

80

XI. SENSE SWITCHES

81

X I . SENSE SWITCHES

There a r e four numbered program switches (or sense switches) on

the IBM 1620 console. Using the Sampler, they can be employed t o

perform the following funct ion:

Sense Switch 1

Sense Switch 2

Sense Switch 3

Sense Switch 4

- J ~ ~~ ~

This switch can be employed a s an
i n d i c a t o r i n an I F t e s t .

Examp 1 e :

I F SWITCH 1, THEN , OTHERWISERS, I f Sense Switch 1
is i n the "on" p o s i t i o n , the THEN
c l ause i s executed, and i f i t i s i n
the "off" p o s i t i o n , t he OTHERWISE
phrase i s executed.

When typing a func t ion r e g i s t e r under
the DISPLAY i n s t r u c t i o n , i f t h i s
switch i s "off", only the l a s t number
i n the func t ion r e g i s t e r i s displayed;
when "on", a l l a r r a y va lues a r e d i s -
played.

I f t h i s switch i s on du r ing execut ion
the program's source language s t e p s
a r e typed o u t .

When t h i s switch i s turned on i t
i n t e r r u p t s the execut ion of a program
and causes a branch t o the typewr i t e r
f o r t he u s e r s i n s t r u c t i o n .

82

These 4 sense switches a f f e c t on ly the typewri te r and not the

card reader . As f o r example,

g ives a l l the va lues of the X a r r a y r ega rd le s s of sense switch pos i t ion ing .

It should be noted t h a t the normal pos i t i on f o r these switches i s o f f .

83

X I I . PROGRAMS I N THE AMTUN SAMPLER SUBROUTINE P A C U G E

84

I

X I I . PROGRAMS I N THE AMTIMI SAMPLER SUBROUTINE PACKAGE

The console programmed subroutine package i s a separa te card

deck from the Sampler and can be read i n only a f t e r the Sampler is

i n t h e computer. To e n t e r these subrout ines i n t o the system the

in s t ruc t ion :

READ. RS

must be typed and a SUPPRESS and END card placed one a t the f r o n t ,

and one a t the end of the card deck of subrout ines .

The following programs a r e contained i n t h i s package (they can

a l l be read i n a s one deck o r t he user can p ick ou t only those which

he needs) :

FORWARD

RANGE O F

This program computes the forward

d i f f e rence of the expression following

i t s mnemonic l a b e l .

This subrout ine i s used t o generate a

funct ion a r r a y over a s p e c i f i c range

and i n t e r v a l s i z e . Af te r the mnemonic

RANGE OF i s typed a funct ion r e g i s t e r

(S-Z) m u s t be entered followed by a

comma, a f t e r which the minimum and

85

DERIV

INT

LOAD

maximum value and the number of i n t e r v a l s

of the a r r a y a re entered (each separated

by a comma). Example:

RANGE OF X , 1, 2 , 10.RS

where 15 X 5 2 , A X = .1

The DERIV subrout ine computes the numerical

d e r i v a t i v e of the mathematical equat ion

declared a f t e r i t s name. This subrout ine

c a l l s the program FORWARD,

This subrout ine computes the d e f i n i t e

i n t e g r a l o f a lgeb ra i c s ta tements . I f

any of the func t ion a r r a y r e g i s t e r s

(S-Z) a r e declared a s the independent

v a r i a b l e , the l i m i t s o f i n t e g r a t i o n a r e

taken t o be the range of the a r r ay v a r i a b l e .

I n o t h e r words, t he independent v a r i a b l e

m u s t be defined i n a RANGE OF i n s t r u c t i o n

p r i o r t o i t s being used under the INT

operand. This subrout ine c a l l s the

program FORWARD.

This subrout ine loads the 10 numbers

required f o r a 5 p t . Gaussian i n t e g r a t i o n

86

L

GAUSSINT

i n t o the W & V r e g i s t e r s . It r e q u i r e s

t h a t the lower and upper l i m i t s of

i n t e g r a t i o n be given. Example:

1. LOAD 1, 10 .RS

where 1 i s the lower l i m i t and 10 i s

the upper l i m i t of i n t e g r a t i o n .

This subroutine computes the d e f i n i t e

i n t e g r a l of the expression which follows

i t , using a 5 p t . Gaussian i n t e g r a t i o n

scheme. To use GAlJSSINT,the ILIAD

subroutine should have been used p r i o r

t o i t , s ince GAUSSINT uses the 10

numbers i n the W & V r e g i s t e r s a s we l l

a s the upper and lower l i m i t s of i n t e g r a t i o n

specif ied i n the ILIAD program. To

change the l i m i t s of i n t e g r a t i o n without

r e c a l l i n g the LOAD program, s e t the

lower l i m i t of i n t e g r a t i o n equal t o A

and the upper l i m i t equal t o B. Example:

1. 3 = A,RS

2. 4 = B.RS

3. GAUSSINT EXP X .RS

87

D EFINT

RUNGEONE

RUNGETHREE

The DEFINT subrout ine s e t s up condi t ions

f o r a 5-pt . Gaussian i n t e g r a t i o n scheme.

It r e q u i r e s t h a t t he lower and upper

l i m i t s of i n t e g r a t i o n and the integrand

be s p e c i f i e d . Example:

DEFINT 0 , 10 , EXP X,RS

This subrout ine c a l l s both of t he

programs LOAD and GAUSSINT.

This subrout ine employs a 4 th o rde r

Runge-Kutta method f o r so lv ing equat ions

of t he type:

This subrout ine i s ca l l ed by typing

RUNGEONE RS.

The computer w i l l then ask f o r t he s t e p

s i z e , XMAX, X (0), Y (O) , and the

func t ion F(X,Y) t o be i n t e g r a t e d .

This subrout ine employs a 4 th o rde r

Runge-Kutta method f o r so lv ing equat ions

of the type:

88

RUNGEFOUR

TYPEOUT

SET

This subroutine is called by typing

RUNGETHREE RS, The computer will then

ask for the step size, XMAX, X (O) , Y'(O),

and the function F(X,Y) to be integrated.

This subroutine employs a 4th order

Runge-Kutta method for solving equations

of the type

This subroutine is called by typing

RUNGEFOUR R S , The computer will then

ask for the step size, maximum value

of X, X(O), Y(O) , Y'(0) and the function

F(X(N) , Y(N) , Z(N)) to be integrated.

This subroutine types the equation and

results of the expression which follows

its mnemonic label. Example:

TYPEOUT 2 + 2 .RS

The computer will then type:

2 + 2 = 4

The subroutine SET allows data to be

input into the computer in any mixed

89

INTERPOLATE

TYPEDATA

format. To use the subrout ine , e n t e r

the name SET followed by the minimum

value of the da t a p o i n t s , a comma,

the maximum value of t he da t a p o i n t s ,

a comma, the number of da t a p o i n t s ,

a comma, and then the ac tua l d a t a po in t s

(each separated by a comma).

This subrout ine uses a f i f t h o rde r

divided d i f f e r e n c e formula t o i n t e r -

po la t e . The va lues i n the Y r e g i s t e r

a r e taken t o be the absc i s sa va lues and

those i n the Z a r r a y t o be the o r d i n a t e

o r func t iona l va lues f o r Y. Y and Z

m u s t have the same range. The numbers

i n the X r e g i s t e r a r e taken t o be the new

absc i s sa va lues . A 5 t h o rde r divided

d i f f e r e n c e formula i s used t o i n t e r p o l a t e

Y t o f ind the new o rd ina te o r func t iona l

va lues f o r Z which correspond t o the

absc i s sa va lues f o r X.

This subrout ine ou tpu t s d a t a from the

typewr i t e r .

pe r l i n e ; t he one on the l e f t i s the

Two d a t a p o i n t s a r e typed

90

PUNCHDATA

TAN

COT

SEC

csc

ARCSIN

ARCCOS

ARCCOT

ARCSEC

ARCCSC

T A "

COTH

SECH

CSCH

ARCSI"

ARCCOSH

abscissa, the one on the right is the

ordinate or functional value corresponding

to the abscissa.

The subroutine PUNCHDATA punches one

register array value per card in a

fqrmat that can be read back into the

computer.

A complete set of trigonometric subroutines are available:

(tangent)

(cotangent)

(secant)

(cosecant)

(sin-')

(cos- l)

(cot- l)

(csc- 1)

(hyperbolic tangent)

(hyperbolic cotangent)

(hyperbolic secant)

(hyperbolic cosecant)

(inverse hyperbolic sine)

(inverse hyperbolic cosine)

91

ARCTANH (inverse hyperbolic tangent)

ARCCOTH (inverse hyperbolic cotangent)

ARCS E CH

ARCCSCH (inverse hyperbolic cosecant)

(inverse hyperbolic secant)

(These qrigonometric subroutines are used in the same manner as the

SIN and COS and give the same degree of accuracy).

All of these subroutines are used just as the mnemonic labels

intrinsic to the syst'em, and must conform to the same rules. If the

mathematical expression to be operated on is more than one term, it

must be enclosed in parentheses, otherwise, a single space should

separate the operator and argument.

subroutine explanation tells whether a subroutine contains any nested

subroutines (or programs). If a subroutine does contain a nested

program, this program must be read into the system prior to reading

in the subroutine. If a sentence is not found under a subroutine

explanation giving the nested programs, then it can be assumed that

there are none.

Also , the last sentence of each

92

XIII. ERROR MESSAGES

93

XIII. ERROR MESSAGES

When an i n c o r r e c t procedure o r a mathematically improper s ta tement

a r e en tered , t he computer w i l l give a typed e r r o r message a s a d i a g n o s t i c .

The following e r r o r messages a r e contained i n the AMTRAN Sampler:

ERROR CODE DESCRIPTION

“HAT NAME HAS BEEN USED The name of a console program

has a l r eady been used by another

program.

M. I.

REENTER STATEMENT

UNDEFINED SYMBOL

NEARING OVERFLOW

94

The s ta tement entered is

mathematical ly improper.

Enter a cor rec ted s ta tement .

An unknown has been used without

having been def ined .

There a r e only 100 p o s i t i o n s

l e f t i n t he console program

a rea and t h e r e f o r e a f t e r 100

mnemonic l a b e l s , l e t t e r s , and/or

numbers have been entered the

console program s torage a rea

w i l l be f u l l . To continue p a s t

t h i s po in t means des t roying

p a r t s o f t he bas i c Szmpler i n t e r -

p re t ive deck.

LEFT PARENTHESIS Too many l e f t parentheses

RIGHT PARENTHESIS Too many r i g h t parentheses

When the above e r r o r s a r e encountered, the use r has a v a r i e t y of

co r rec t ion p o s s i b i l i t i e s ava i l ab le t o him.

ones a re :

Some of the more common

ERROR CODE CORRECTION

THAT NAME HAS BEEN USED Delete the previous program

by typing DELETE followed by

the name of the program.

prqcedure f r e e s the program's

mnemonic l a b e l) . O r , by typ ing

a $E, which e r a s e s the s ta tement

it fol lows, a new i n s t r u c t i o n

can be entered ass igning a d i f -

f e r e n t program l a b e l .

(t h i s

M . I .
REENTER STATEMENT

These two messages,

appearing toge the r , au tomat ica l ly

95

UNDEFINED SYMBOL

LEFT PARENTHESIS
RIGHT PARENTHESIS

delete the incorrect statement,

and renumber for the corrected

expression.

In this case a statement must

be added to define the symbol.

This can be done by deleting

the line containing the undefined

symbol (type $RS), and then

defining the symbol. After

this definition is completed

followed by the expression which

contained the undefined symbol

a comma can be entered or a

".RS" can be entered in which

case the computer will number

a new line for the expression.

By typing a $RS the user can

reenter the incorrect statement

with the corrected parenthesis.

-WEARING OVERFLOW

~~

The user would check to see how

close he is to the end of his

program. If it is over 100

96

positions , he must delete enough

programs in core to give him the

needed space. (A position is

required for a mnemonic label,

a letter, or a number).

In making corrections, the user may, if he wishes, enter operations

ohe at a time. For example:

INT EXP X, RS

can be entered as

INT RS EXP RS X RS, RS

Causing the computer to carry out the designated operations a step

at a time. This mode of operation can be very useful in debugging a

faulty statement for it examines the intermediate results at each step

along the way. In this way, an error can be pinpointed, for each RS

causes execution of the preceding operator or symbol. Consider the case

where a statement has been entered with too many right parentheses.

1. X-(Y + EXP X)) - 6 4 . 3 .RS The computer would type RIGHT PARENTHESIS

The user would then type $RS, after which the computer would renumber for the

carrected statement. If it is not apparent which parenthesis is causing

trouble, the statement can be entered a step at a time.

1. X RS - RS (RS Y RS + RS EXP RS X RS) RS) R S
At this point the computer would type RIGHT PARENTHESES.

97

again telling the user that the symbol before the last RS is the

incorrect parenthesis. He could then reenter his statement as

X - (Y + EXP X) - 64.3 .RS

or, if he wanted to check the rest of the statement, he could type

@RS, which causes the computer to backspace and eliminate the last

entry (in this case the parenthesis) and retype up to the backspace

position, so that the statement would read:

1. X - (Y + EXP X)

From here he could continue

RS - RS 64.3 RS. RS

In addition to the AMTRAN Sampler error codes, the following

error messages used in the IBM 1620 floating point subroutines are

typed out whenever necessary -

07 Floating divide - attempt to divide using a number
with a zero mantissa divisor.

08 Floating square root - attempt to find the square
root of a negative number.

09 Floating sine or floating cosine - exponent greater
than mantissa length.

10 Floating sine or floating cosine - exponent less
than mantissa length, greater than 03.

13 Floating LN or floating log - zero mantissa.
14 Floating LN or floating log - negative.

98

XIV. SOLVING A NON-LINEAR DIFFERENTIAL E Q U A T I m

99

X I V , SOLVING A NON-LINEAR D I F F E R E N T I A L EQUATION

THE SOLVE OPERATOR

AMTRAN possesses a general purpose Runge-Kutta subrout ine package

f o r solving d i f f e r e n t i a l equat ions. To use t h i s ope ra to r , simply

e n t e r SOLVE RS (no period a f t e r SOLVE). The computer w i l l they type

ou t the i n s t r u c t i o n s :

ENTER THE NUMBER, N, WHICH DESCRIBES YOUR D I F F E R E N T I A L EQUATION.

DY/DX = F(X,Y)

DY/DX = F (X , Y , Z) , DZ/DX = G(X,Y,Z)

D2Y/DX2 = F(X,Y)

D 2 Y / ~ x 2 = F(X,Y,DY/DX)

For example: To solve the d i f f e r e n t i a l equat ion

X y" = y ' + y - e

e n t e r N = 4.

(Note t h a t when the computer a sks you t o e n t e r F (X , Y , . . .),
you must e n t e r a l l v a r i a b l e s with the s u b s c r i p t N and the DY/DX e n t r i e s

must be entered a s Z SUB N)

100

STEP SIZE = .1,

x s u B o = o ,

xMAx= 1,

Y SUB 0 = 1,

DY/DX SUB 0 (Z SUB 0) = 1,

F (X SUB N, Y SUB N, Z SUB N) = Z SUB N + Y SUB N - EXJ? X SUB N.

The integration process may be terminated at any time by turning

on Sense Switch 4 . The results of this example should be exp x (0 5 X f 1).

2. DISPLAY RESULTS.

RESULTS SUB 10 = 2.71828

PICARD'S METHOD

Picard's method of solving integral equations by successive

iterations is well-suited to on-line computer operations.

speaking, Picard's method works as long as the norm of the differential

operator is not too large over the abscissa range of the tria'l function.

A few iterations are generally sufficient to tell the user whether

or not his solution is going to converge.

Generally

The differential equation must be rewritten as an integral

equation (thereby incorporating the boundary conditions).

approximation of Y is obtained by generating a function over a range

and for some chosen interval size.

A first

The integration is then carried

101

I ou t using the assumed f i r s t approximation t o Y . The computed func t ion

Y i s then in se r t ed i n t o the i n t e g r a l equat ion i n place of the previous

approximation of Y and the i n t e g r a t i o n ca r r i ed out again t o ob ta in a

new approximation t o Y.

i n t e g r a t i o n s produce no changes i n Y .

computed f o r Y i s displayed and i n t h i s way the u s e r can determine i f i t

converges. For example, cons ider the d i f f e r e n t i a l equation:

This i t e r a t i o n cycle i s repeated u n t i l f u r t h e r

Af te r each i t e r a t i o n , the value

3 2 Y'' = y exp (-y) -2x over the range . 2 I x 5 1. To solve

t h i s equat ion, r ewr i t e i t a s

3 2 y ' = J X (y + y exp (- 6) -2x) dx + C.
. 2

3 2 A t x = . 2 , (y + y exp (-y) - 2x) dx = 0

by d e f i n i t i o n and C = y ' (. 2) .

Then y = J X 2 J x ' (y + y exp (-y) -2x") dx"dx' + xy' (. 2) + C.

a t x = . 2 , y(.2) = C

3 2

. 2

Therefore , i n i n t e g r a l form,

2
y = JJ (y3 + y exp (-y) -2x") dx"dx' + xy' (. 2) + y(.2)

To solve t h i s with AMTRAN:

ENTER PROGRAM

1. .0025 = A , .005 = B. .RS

102

I
2. RANGE Y, . 2 , 1, 5 0 . RS

3 .

4 . DISPLAY Y.

REPEAT 1 0 , INT IN" (YYY + Y EXP (-Y) + 2XX) + AX + B = Y

The computer then types

Y SUB 50 = .169438

Y SUB 50 = .16945287

Y SUB. 50 = .16944028

Y SUB 50 = .1694401

Y SUB 50 = .1694401

Y SUB 50 = .1694401

Y SUB 50 = .1694401

Y SUB 50 = .1694401

Y SUB 50 = 8.1694401

Y SUB 50 = .1694401

In this example four iterations were sufficient to produce

convergence and further iterations simply give the same results.

103

XV. CONCLUSION

I n summary, the p r e s e n t AM” Sampler system provides the use r

w i t h a n e f f i c i e n t and convenient method of e n t e r i n g equat ions i n t o the

IBM 1620 computer and bu i ld ing high l e v e l operators which are equ iva len t

t o the b a s i c i n s t r u c t i o n s e t i n t r i n s i c i n the system.

Modifications and improvements are being made i n the Sampler

system t o extend i t s c a p a b i l i t i e s and s implify i t s use. Therefore,

a l l suggest lons o r problems encountered by the use r a r e important t o

the authors of t h i s manual who i n v i t e comments on the system. A key-

board v e r s i o n of AMTRAN which takes advantage of s p e c i a l hardware f o r

i n p u t and ou tpu t i s now a v a i l a b l e . Recent improvements i n software

inc lud ing dynamic memory a l l o c a t i o n , a r e a l s o a v a i l a b l e w i t h t h i s

sys t e m .

A t p r e s e n t , r e sea rch e f f o r t i s being advanced t o convert the

AM” system t o the Burroughs 5500 and the I B M 1130 computers.

105

I APPENDIX A

LOADING THE SOFTWARE

1) S e t the Typewriter

A) Le f t margin s e t a t 10
B) 1s t t ab s e t a t 18
C) 2nd t ab s e t a t 45
D) Right margin se t a t 90

2) Clear Memory

A) Press RESET and INSERT
B) Type i n 160001000000
C) S e t PARITY and 1/0 program switches t o PROGRAM
D) Press RELEASE and START
E) I f no PARITY o r 1/0 l i g h t s , p ress INSTANT STOP,

otherwise r epea t 2A) ,B) ,D)

3) S e t PROGRAM Switches

A) PAR'ITY and 1/0 t o STOP
B) OVERFLOW t o PROGRAM
C) PROGRAM switches 1 through 4 - t o OFF

4) Load Decks

A) Place yellow deck, followed by white deck, i n t o

B) Press INSTANT STOP and RESET
C) Press LOAD on t h e hopper
D) The computer w i l l s t o p on MANUAL a f t e r t he white

E) P ress START t o load the yel low deck
F) Upon completion of loading the yel low deck, t he

following heading w i l l be typed and t h e program
w i l l wa i t f o r an e n t r y

READ hopper

deck i s ' l o a d e d

ENTER PROGRAM
1.

Please note t h a t t h i s procedure i s g iven f o r an IBM MOD 1 computer.

106

APPENDIX B

MNEMONIC LABELS INTRINSIC
IN THE AMTFUN SAMPLER

For a detailed explanation of the constants and operators

intrinsic in the system, the reader is asked to consult the INDEX

where the page numbers for these explanations can be obtained. Those

not explained in detail in the manual:

ABS
INTERVALS
LEFT
IN

are given below.

ABS

INTERVALS

LOG
RESET
RESULTS
RIGHT

SETREG
SUM
XMAX
XMIN

The absolute value of the designated

function is taken. The complete forms

are:

ABS Y .RS

ABS (X - Y/Z) .RS

The number, N, of intervals of a function

is given by this operator.

number of ordinates stored in a function

register is N + 1.

an array of 51 numbers can be stored in

the function register.

The actual

If 50 = INTERVALS,

107

LEFT

LN

LOG

RESET

The complete entry is of the form

LEFT Y.RS

The referenced function register is loaded

into the variable accumulator and left-

shifted. The number in position 1 is

moved to position 0. The number in

location 2 is moved to location 1, and so

on. The right most position is filled by

extrapolation using the four preceding

points.

This operator computes the natural

logarithm (base e) of the expression it

precedes. To illustrate:

1. LN 10.3.RS

2 . LN (X + Y/G).RS

This operator computes the logarithm to

the base 10 of the expression following

it. Example:

1. LOG (.7 -I- X/Y).RS

This operator is designed to restore the

computer to its original state at the

time the AMTRAN interpretive deck was

read in. It resets pertinent address

108

RESULTS

registers, counters, etc. , without,

however, modifying any data or console

programs. It is generally used as an

erase and reset operation for everything

except data and console programs.

This mnemonic is used to represent that

register, known as the floating accumulator

which moves up and down the stack of

working registers temporarily storing

intermediate and final results.

Consider the mathematical expression:

1. X + Y.RS
When a register is not declared to which

the numerical result of an equation is to

be transferred, the result is put in

RESULTS (the floating accumulator). The

accumulator acts as a temporary function

and can therefore be addressed as a

function register.

To illustrate:

1 . X + Y.RS
2. SIN RESULTS + 1 = Z.RS

Statement 1 adds Y to X and puts the

result in the accumulator which initially

109

is Reg. 1. Statement 2 takes the sine of

REG 1 (the accumulator containing X + Y)
adds one to it, and transfers the result

to the Z register. Because the accumulator

moves after each storage of a number or

array, a result in the accumulator must

be called immediately after it is executed,

otherwise the accumulator will change its

location in the stack of working registers

and the desired numerical result destroyed.

For example reconsider statement 2 as

2 . 1 + SIN RESULTS = Z.RS

In this instance the number 1 is loaded

into the accumulator whipping out X + Y;
therefore, 1 + SIN RESULTS # SIN RESULTS

+ 1 # Z. It must also be remembered that

only one operation can be performed on

the accumulator without causing it to

change registers. For example: Suppose

that after 1. X + Y.RS has been executed

the user wants to integrate X + Y and
add to it the sine of X + Y. (i-e. INT

(X + Y) + SIN (X + Y) = RS. The

instruction INT RESULTS + SIN RESULTS

does not give the desired result.

110

If a hard copy of statement 1 is required,

it can be obtained with either of the

following instructions:

2. CARD RESULTS .RS - gives output
on cards

2. DISPLAY RESULTS .RS - gives
typed output

Since the two operators CARD and DISPLAY

do not load into the accumulator, they

cannot effect-its contents.

To illustrate: CARD RESULTS can be

nested safely between statements

1. X + Y.RS
2. CARD RESULTS .RS

3 . SIN RESULTS + 1.RS
The purpose of not declaring a register

to which the result of a mathematical

expression are to be transferred, is to

conserve storage registers. When a result

is not needed for use later in a program,

there is no reason for assigning it a

storage register.

111

RIGHT

SETREG

Similar to left shift, with the exception

that the numbers in the specified function

register are moved one position to the

right. The left most position is filled

by extrapolating the first 4 values.

Sets the length of the working register.

The instruction is:

SETREG N.RS

Where N is the number of intervals the

user requires for his function arrays.

The computer then determines the number

of working registers available and types:

YOU NOW HAVE FUNCTION REGISTERS

The instruction SETREG N sets every

function register to the same size. For

N intervals the computer allow N + 5
number locations in each register; 1 for

the constant accumulator, 1 for the

minimum and 1 for the maximum value of

the function, 1 for the interval size,

and N + 1 locations for the array. Note

that N intervals generates N + 1 numbers.
This operator allows the user to tailor

core to the size of his program and make

112

1 SUM

available to himself a larger number of

working registers. Initially the number

locations available to arrays are divided

into 13 registers. In the 40 K version

of M R A N each register is capable of

holding an array of 51 numbers, and in

the 60 K version, arrays of LO1 numbers

can be stored in each function register.

This operator replaces a function with the

running summation of its ordinates.

example :

For

SUM X.RS

SUM (Y/X - 3).RS
The referenced function is loaded into the

floating accumulator. The data in position

2 is then added to the data in position 1

and the result stored in location 2. This

process continues until the data in position

N is added to the data in location N-1 and

the result stored in location N.

Designates the upper limit of a.function.

It corresponds to X SUB (-2) .

113

X M I N Used to represent the lower limit to a

function. It can also be designated as

X SUB (- 3) .

114

APPENDIX C

XMIN

I n the Sampler t he re e x i s t v a r i a b l e length func t ion r e g i s t e r s which

can be addressed by numbers; REG1, REG 2, ... e t c . o r the a lphabe t i c

l e t t e r s S, T, ... 2. These r e g i s t e r s occur consecut ively i n core , t h a t

is REG 1, REG 2, ... REG N.

A t o t a l of 1050 numbers a r e a l ldca t ed t o the func t ion r e g i s t e r s .

I n i t i a l l y the number of r e g i s t e r s i s s e t a t 13, allowing 100 i n t e r v a l s

(60K vers ion) o r 50 i n t e r v a l s (40K vers ion) f o r each r e g i s t e r . The

l a s t e i g h t r e g i s t e r s correspond t o and can be addressed by the l e t t e r s

S, T, U, V, X, W, Y, Z.

Each func t ion c a r r i e s wi th i t the maximum and minimum values of i t s

independent v a r i a b l e and the number of i n t e r v a l s used i n i t s r ep resen ta t ion

(N i n t e r v a l s genera tes N + 1 numbers). These three q u a n t i t i e s a r e s to red

50 i n t e r v a l s (51 numbers)
XMAX o r 100 i n t e r v a l s (101 Numbers)

i n s p e c i a l number loca t ions s e t a s ide i n each func t ion r e g i s t e r .

Each block r ep resen t s one number loca t ion which w i l l hold an e i g h t d i g i t

number. Example:

1. RANGE OF X, 0, 1, 10. RS

This i n s t r u c t i o n generates X over the range from 0 t o 1 wi th

10 i n t e r v a l s , and then au tomat ica l ly s t o r e s the r e s u l t i n t he ind ica t ed

r e g i s t e r (X i n t h i s example).

appearance:

The X r e g i s t e r would have the following

115

. 4 I . 5 I . 6 I . 7 I .8 1 . 9 I 1 .O I Unused loca t ions

10 i n t e r v a l s , 11 numbers

Also ,

XMIN = XSUB(-3)

XMAX = XSUB(-2)

INTERVALS = XSUB(-1) .
XSUB(-4) i s a s p e c i a l l o c a t i o n c a l l e d the cons t an t accumulator.

If a constant i s s e t equal t o a funct ion r e g i s t e r , say 5 = X.,

then the 5 i s s to red i n the f i r s t l o c a t i o n of the designated r e g i s t e r

(XSUB-4). T rans fe r r ing a cons t an t i n t o a funct ion r e g i s t e r causes the

i n t e r v a l number of the funct ion r e g i s t e r t o be se t equal t o zero.

To i l l u s t r a t e :

SETREG K.RS,

where K i s the i n t e r v a l s i z e , au tomat i ca l ly s e t s each r e g i s t e r t o K + 5

loca t ions . The computer then c a l c u l a t e s the number "J" of r e g i s t e r s

a v a i l a b l e with t h i s i n t e r v a l s i z e and types:

YOU NOW HAVE J FUNCTION REGISTERS

An i n t e r v a l s i z e of 50 gives 19 func t ion r e g i s t e r s , 8 s to rage and 11

working. With t h i s many working r e g i s t e r s i t i s almost impossible t o

overflow i n t o the s torage a r e a s S , T , ... Z .

I n o rde r t o i n t e r p r e t mathematical s ta tements c o r r e c t l y the AMTRAN

system operates with a va r i ab le o r f l o a t i n g accumulator (mnemonic code

RESULTS) which moves UP and down the s t a c k of working r e g i s t e r s . The

116

accumulator i s no t , however, a s epa ra t e r e g i s t e r and a t the beginning of

each program i t i s REG 1. Consider the following series of mathematical

statements:

1. RANGE DF X, 2, 3, 1O.W

2. RANGE OF Y, 1, 2, 10.W

3. RANGE OF T, 7.5, 8.5, 1O.W

4 . XY + T(X-Y) = W . R S

The f i r s t t h ree s ta tements would cause the working and s to rage r e g i s t e r s

1.1

2.1

7.6

t o look a s they do i n Figure 1.

1 . 2 1 .3

2.2 2 .3

7.7- 7.8

-
-
1.4

117

Statement 4 . XY + T(X-Y) = W.RS causes the following pos i t i on changes of

t he accumulator:

a.

b. Accumulator moves up t o REG 2 where Y i s then loaded.

c.

Contents of X r e g i s t e r a r e loaded i n t o the accumulator (REG 1).

When the computer encounters t he Il+" s ign , X i s mul t ip l ied by Y ;

the accumulator moves back t o REG 1 and s t o r e s t h i s product.

d. Accumulator moves t o REG 2 and s t o r e s T.

e. Finding the parenthes is the accumulator moves t o REG 3 o r the

S r e g i s t e r and loads X. NOTE: Working r e g i s t e r s and s to rage

r e g i s t e r s can overlap.

f. The accumulator moves up t o REG 4 o r the T r e g i s t e r and s t o r e s Y .

NOTE: The conten ts of t he T r e g i s t e r have been destroyed perma-

nen t ly and replaced wi th the Y r e g i s t e r ' s values .

aga in i t w i l l g ive Y .

I f T i s c a l l e d

g. Encountering the r i g h t pa ren thes i s the computer s u b t r a c t s Y from

X ; t he accumulator moves down the s t a c k t o REG 3 and s t o r e s t h i s

r e s u l t .

h. T i s then mul t ip l i ed by REG 3 and -the r e s u l t s to red i n REG 2.

i. Finding the equal s i g n , t he computer adds REG 2 (conta in ing T(X-Y))

t o REG 1 (conta in ing XY) and the r e s u l t i s s to red i n REG 1.

j. The computer loads REG 1 i n t o the W r e g i s t e r .

I n the preceding example l a rge blocks of each func t ion r e g i s t e r were unused

Also, the o r i g i n a l a r r ay i n the T r e g i s t e r was destroyed because the

accumulator worked i t s way i n t o the s t a c k of s to rage r e g i s t e r s . To avoid

t h i s occurrence a longer s t a c k of working r e g i s t e r s could be c rea t ed . I f

i t i s known t h a t the maximum i n t e r v a l s i z e of the a r r a y ' s i n a program

i s K < 5 0 i n the 40K vers ion (and K<100 i n the 60K v e r s i o n) , the u s e r can

s e t the number of r e g i s t e r s t o opt imize co re .

118

REFERENCES

1. M. R. Albert; P. L. Clem, Jr.; V. A. Dauro; L. Morrow, Jr.;
Northrop Space Laboratories, Huntsville, Alabama; and
J. Reinfelds; A. J. Scott; R. N. Seitz; L. N. Wood; NASA,
MSFC, Huntsville, Alabama, "The AMTRAN Sampler System,"
September 1965.

2. Robert N. Seitz, "AMTFUN, An On-Line Keyboard Computer
System for Scientific and Engineering Use," NASA
TM X-53243, May 4 , 1965.

3 . J. Reinfelds; L. A. Flenker; R. N. Seitz; P. L. Clem, Jr.;
"AETTRAN, A Remote - Terminal, Conversational - Mode
Computer System, March 1966.

I 1 9

INDEX

ABS
Addition
AND
ALL
ARCCOS
ARCCOSH
ARCCOT
ARCCOTH
ARCCSC
ARCCSCH
ARCSEC
ARCSECH
ARCS IN
ARCS INH
ARCT AN
ARCTANH
Arithmetic Expressions
Array Arithmetic
at sign (3
CARD
Comment S tat ement s
Console Programs
Constant
CORE
cos
COT
csc
Data Input/Output
Decimals
DEFINT
D EGRE E S
DELETE
DELETE ALL
DERIV
Differentiation, Numerical
Differentiation, Symbolic
DISPLAY
Division
Dollar Sign $
DUMP
EDIT
END

6,8
25
8,35,36
10,51-53,72
91
91
91
92
91
92
91
92
91
91
1 1 , 9 1
92

30
7 7 , 98
9,75,83
77 ,80
6,47,48,85

10 ,56
6,11 , 92
91
91
14,15,73- 76
14,15
88
8 ,12 ,18 ,24 ,27

53
71,86
42,43,100,101
44,45
9,20,39,56,75
27
77,95-97
9 ,52
9,54-55
10,72 , 85

24- 25

8,17-18

9,53,95

120

ENTER 9,61,64-66,72
ENTRY 14,61,64,66,72
Equal Sign 23 , 24

Error Codes (FORTRAN) 98
EXCEEDS 8,32,33
EXECUTE 10,60,61,72,73
EXIT 10,56,61 , 72
EXP 6 , 9,12,36,38

FORTRAN Error Codes 98
FORWARD 71,85

GAUSS INT 87,88
GO TO 10,12,61,72
Hardware Requirements 4
IBM 1620 4
IF 8 , 32-35
Input /Output 71-76, 85
INPUT

Error Messages (AMTRAN) 94,95

Format control 76-79

Function 17-20

9 , 61- 69 , 72
INT 71,86
Integration, Numerical 38-42,49,50,67,86,101-103
INTERPOLATE 90
INTERVALS 10,19
LEFT 8 , 107
LESSTHAN 8,32,33

LG 8,18,27
LIST 9,52,53
LN 6,9,40
LOAD 86
LOG 9
Mnemonic labels (complete list) 8-11
Modes of Operation 60,61,63,73,85
Multiplication 26
NAME 10,49,50
OTHERWISE 32

PI 6,8,12,18,27

POWER 9,12,14,15
Program, Console 5,6,47,48,85

Programming Mechanics 11,12,48,49

Levels of Programing 66-68

Output/Input 71-76,85

Picard's Method 101-103

Programing Capabilities 5 , 6 , 49-60

PUNCH 77-79
PUNCHDATA 91
PUNCHOUT 9,51,72
PUNCHOUT ALL 51,72

121

RANGE OF
READ
REG
R e g i s t e r
REPEAT
RESET
RESULTS
RIGHT
RS
RLJNGEONE
RUNGETHREE
RUNGEF OUR
Sampler, AMTRAN
S c i e n t i f i c N o t a t i o n
SEC
Sense Switches
SET
S ETREG
SIN
Software
SOLVE

SQRT
Step S i z e
SUB
Subrout ines
S u b t r a c t i o n
SUM
SUPPRESS
SWITCH
Symbolic D i f f e r e n t i a t i o n
TAN
THEN
TRANSFER
Trigonometr ic S u b r o u t i n e s
TYPE
TY PEDATA
TYPEOUT
W
XMAX
X M I N

SQ

1 9 , 5 0 , 5 5 , 5 7 , 6 2 , 7 1 , 8 5
9 ,51 ,52 ,72 ,85
18

1 0 , 3 5 , 5 8 , 6 1 , 7 2

1 0 , 2 4 , 2 5 , 3 9
8

8 8
88
8 9
3-5 ,14 ,23 ,38 ,44 ,47 ,48 ,71 ,85 ,94
1 5
9 1
21 ,35 ,39 ,76 ,82 ,83
71 ,73 ,76 ,89
1 0 , 2 0
6 , 1 1 , 92
4
100
6 , 9 , 1 2 , 3 2
6 , 9 , 3 2
1 9 , 3 9 , 4 0 , 4 1 , 8 6 , 8 9 , 1 0 1

10 ,17-20,24 ,26 ,27

9 ,55-56

5 ,6 ,24 ,44 ,48 ,63 ,66 ,95 -98

1 0 , 2 0 , 2 1 , 2 4 - 2 6 , 7 6
2 5 , 3 8 , 4 8 , 7 1 , 8 5 - 9 2
25
8
10 ,60-63,85
1 0 , 2 1 , 3 5 , 8 2
44
6 , 9 1
32,57
58 ,61 , 7 2
6 , 9 1

5 , 9 0
5 , 7 1 , 8 9
9 , 8 0
1 0 , 1 9 , 8 8 , 8 9 , 1 0 1

9 ,77-80

1 0 , 1 9

122

JULY 1966 APPROVAL TM X-53342

THE AMTRAN SAMPLER SYSTEM
INSTRUCTION MANUAL (REVISED)

Albert, M. R.; Clem, P. C.; Flenker, L. A.;
Reinfelds, J.; Seitz, R. N.; and Wood, L. H.

This information in this instruction manual has been reviewed for
security classification.
Department of Defense.or Atomic Energy Commission programs has been
made by the MSFC Security Classification Office. This report, in its
entirety, has been determined to be unclassified.

Review of any information concerning the

This document has also been reviewed and approved for technical
accuracy.

ERNST STUHLINGER
DIRECTOR, RESEARCH PROJECTS LABORATORY

123

DISTRIBUTION TM X-53342

DIR
Dr. von Braun

R-DIR
Dr. McCall

R- RP
Dr . Stuhlinger
Mr. Heller
Mr. Bucher
Mr . Wood
Dr. Shelton
Dr. Seitz (150)

R- AERO
Dr. Geissler

R- ASTR
Dr. Haeussermann

MS-IL (8)
MS-T Roy Bland (100)

Mr. East

National Aeronautics and Space

Washington, D.C. 20546

OART - RE I

Administration

Computation & Data Reduction Center
TRW Space Technology Laboratory
One Space Park
Redondo Beach, California
Dr. Burton D. Fried
Dr. Eldred Nelson
Mr. William Sassaman

Dr. Ivan E. Sutherland
Room D-200
Advanced Research Projects Agency
The Pentagon
Washington, D.C.

Mr. Gary Clark
Vice President, Marketing
Defense and Space and Special Systems
Burroughs Corporation
Paoli, Pennsylvania

R- COMP
Dr. Hoelzer
Mr. Bradshaw
Mr. Prince
Mr. Lynn
Dr. Krenn
Mr. Felder
Mr . Joseph

R- P&VE
Mr. Cline

AST- S
Dr. Lange

R- AS
Mr. Williams

MS-IP

cc-P
MS-H

Prof. T. Oettinger
computation Laboratory
Harvard University
Cambridge, Massachusetts

Dr. Glen J. Culler
Computation Laboratory
University of California
Santa Barbara, California

OART- RRA
National Aeronautics and

Space Administration
F.O.B. 10
Washington, D.C. 20546

Dr. Gary Etgen
Dr . Raymond Wil son
Dr. Hermann Kurzweg

Mr. Jack Ault
Defense and Space and

Special Systems
Burroughs Corporation
Paoli , Pennsylvania

1 2 4

Scientific and Technical Information Facility

P.O. Box 33
College Park,
Ma ry la nd

Attn: NASA Rep S-AK/RKT (2 5)

125

